Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
BMC Plant Biol ; 24(1): 283, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38627633

RESUMO

BACKGROUND: Bud sports occur spontaneously in plants when new growth exhibits a distinct phenotype from the rest of the parent plant. The Witch's Broom bud sport occurs occasionally in various grapevine (Vitis vinifera) varieties and displays a suite of developmental defects, including dwarf features and reduced fertility. While it is highly detrimental for grapevine growers, it also serves as a useful tool for studying grapevine development. We used the Witch's Broom bud sport in grapevine to understand the developmental trajectories of the bud sports, as well as the potential genetic basis. We analyzed the phenotypes of two independent cases of the Witch's Broom bud sport, in the Dakapo and Merlot varieties of grapevine, alongside wild type counterparts. To do so, we quantified various shoot traits, performed 3D X-ray Computed Tomography on dormant buds, and landmarked leaves from the samples. We also performed Illumina and Oxford Nanopore sequencing on the samples and called genetic variants using these sequencing datasets. RESULTS: The Dakapo and Merlot cases of Witch's Broom displayed severe developmental defects, with no fruit/clusters formed and dwarf vegetative features. However, the Dakapo and Merlot cases of Witch's Broom studied were also phenotypically different from one another, with distinct differences in bud and leaf development. We identified 968-974 unique genetic mutations in our two Witch's Broom cases that are potential causal variants of the bud sports. Examining gene function and validating these genetic candidates through PCR and Sanger-sequencing revealed one strong candidate mutation in Merlot Witch's Broom impacting the gene GSVIVG01008260001. CONCLUSIONS: The Witch's Broom bud sports in both varieties studied had dwarf phenotypes, but the two instances studied were also vastly different from one another and likely have distinct genetic bases. Future work on Witch's Broom bud sports in grapevine could provide more insight into development and the genetic pathways involved in grapevine.


Assuntos
Folhas de Planta , Vitis , Vitis/genética , Regulação da Expressão Gênica de Plantas
2.
New Phytol ; 240(3): 1292-1304, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37614211

RESUMO

Processes affecting rates of sequence polymorphism are fundamental to the evolution of gene duplicates. The relationship between gene activity and sequence polymorphism can influence the likelihood that functionally redundant gene copies are co-maintained in stable evolutionary equilibria vs other outcomes such as neofunctionalization. Here, we investigate genic variation in epigenome-associated polymorphism rates in Arabidopsis thaliana and consider whether these affect the evolution of gene duplicates. We compared the frequency of sequence polymorphism and patterns of genetic differentiation between genes classified by exon methylation patterns: unmethylated (unM), gene-body methylated (gbM), and transposon-like methylated (teM) states, which reflect divergence in gene expression. We found that the frequency of polymorphism was higher in teM (transcriptionally repressed, tissue-specific) genes and lower in gbM (active, constitutively expressed) genes. Comparisons of gene duplicates were largely consistent with genome-wide patterns - gene copies that exhibit teM accumulate more variation, evolve faster, and are in chromatin states associated with reduced DNA repair. This relationship between expression, the epigenome, and polymorphism may lead to the breakdown of equilibrium states that would otherwise maintain genetic redundancies. Epigenome-mediated polymorphism rate variation may facilitate the evolution of novel gene functions in duplicate paralogs maintained over evolutionary time.

3.
J Urol ; 210(4): 619-629, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37548555

RESUMO

PURPOSE: Low-grade intermediate-risk nonmuscle-invasive bladder cancer is a chronic illness commonly treated by repetitive transurethral resection of bladder tumor. We compared the efficacy and safety of intravesical chemoablation with UGN-102 (a reverse thermal gel containing mitomycin), with or without subsequent transurethral resection of bladder tumor, to transurethral resection of bladder tumor alone in patients with low-grade intermediate-risk nonmuscle-invasive bladder cancer. MATERIALS AND METHODS: This prospective, randomized, phase 3 trial recruited patients with new or recurrent low-grade intermediate-risk nonmuscle-invasive bladder cancer to receive initial treatment with either UGN-102 once weekly for 6 weeks or transurethral resection of bladder tumor. Patients were followed quarterly by endoscopy, cytology, and for-cause biopsy. The primary end point was disease-free survival. All patients were followed for adverse events. RESULTS: Trial enrollment was halted by the sponsor to pursue an alternative development strategy after 282 of a planned 632 patients were randomized to UGN-102 ± subsequent transurethral resection of bladder tumor (n=142) or transurethral resection of bladder tumor monotherapy (n=140), rendering the trial underpowered to perform hypothesis testing. Patients were predominantly male and ≥65 years of age. Tumor-free complete response 3 months after initial treatment was achieved by 92 patients (65%) who received UGN-102 and 89 patients (64%) treated by transurethral resection of bladder tumor. The estimated probability of disease-free survival 15 months after randomization was 72% for UGN-102 ± transurethral resection of bladder tumor and 50% for transurethral resection of bladder tumor (hazard ratio 0.45). The most common adverse events (incidence ≥10%) in the UGN-102 group were dysuria, micturition urgency, nocturia, and pollakiuria. CONCLUSIONS: Primary, nonsurgical chemoablation with UGN-102 for the management of low-grade intermediate-risk nonmuscle-invasive bladder cancer offers a potential therapeutic alternative to immediate transurethral resection of bladder tumor monotherapy and warrants further investigation.


Assuntos
Ressecção Transuretral de Bexiga , Neoplasias da Bexiga Urinária , Humanos , Masculino , Feminino , Estudos Prospectivos , Neoplasias da Bexiga Urinária/tratamento farmacológico , Neoplasias da Bexiga Urinária/cirurgia , Procedimentos Cirúrgicos Urológicos , Mitomicina/uso terapêutico , Administração Intravesical , Invasividade Neoplásica , Recidiva Local de Neoplasia/patologia
4.
Nature ; 617(7962): 785-791, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37165193

RESUMO

Different plant species within the grasses were parallel targets of domestication, giving rise to crops with distinct evolutionary histories and traits1. Key traits that distinguish these species are mediated by specialized cell types2. Here we compare the transcriptomes of root cells in three grass species-Zea mays, Sorghum bicolor and Setaria viridis. We show that single-cell and single-nucleus RNA sequencing provide complementary readouts of cell identity in dicots and monocots, warranting a combined analysis. Cell types were mapped across species to identify robust, orthologous marker genes. The comparative cellular analysis shows that the transcriptomes of some cell types diverged more rapidly than those of others-driven, in part, by recruitment of gene modules from other cell types. The data also show that a recent whole-genome duplication provides a rich source of new, highly localized gene expression domains that favour fast-evolving cell types. Together, the cell-by-cell comparative analysis shows how fine-scale cellular profiling can extract conserved modules from a pan transcriptome and provide insight on the evolution of cells that mediate key functions in crops.


Assuntos
Produtos Agrícolas , Setaria (Planta) , Sorghum , Transcriptoma , Zea mays , Sequência de Bases , Regulação da Expressão Gênica de Plantas/genética , Sorghum/citologia , Sorghum/genética , Transcriptoma/genética , Zea mays/citologia , Zea mays/genética , Setaria (Planta)/citologia , Setaria (Planta)/genética , Raízes de Plantas/citologia , Análise da Expressão Gênica de Célula Única , Análise de Sequência de RNA , Produtos Agrícolas/citologia , Produtos Agrícolas/genética , Evolução Molecular
5.
Plant Physiol ; 192(4): 2883-2901, 2023 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-37061825

RESUMO

Gene duplication is a source of evolutionary novelty. DNA methylation may play a role in the evolution of duplicate genes (paralogs) through its association with gene expression. While this relationship has been examined to varying extents in a few individual species, the generalizability of these results at either a broad phylogenetic scale with species of differing duplication histories or across a population remains unknown. We applied a comparative epigenomic approach to 43 angiosperm species across the phylogeny and a population of 928 Arabidopsis (Arabidopsis thaliana) accessions, examining the association of DNA methylation with paralog evolution. Genic DNA methylation was differentially associated with duplication type, the age of duplication, sequence evolution, and gene expression. Whole-genome duplicates were typically enriched for CG-only gene body methylated or unmethylated genes, while single-gene duplications were typically enriched for non-CG methylated or unmethylated genes. Non-CG methylation, in particular, was a characteristic of more recent single-gene duplicates. Core angiosperm gene families were differentiated into those which preferentially retain paralogs and "duplication-resistant" families, which convergently reverted to singletons following duplication. Duplication-resistant families that still have paralogous copies were, uncharacteristically for core angiosperm genes, enriched for non-CG methylation. Non-CG methylated paralogs had higher rates of sequence evolution, higher frequency of presence-absence variation, and more limited expression. This suggests that silencing by non-CG methylation may be important to maintaining dosage following duplication and be a precursor to fractionation. Our results indicate that genic methylation marks differing evolutionary trajectories and fates between paralogous genes and have a role in maintaining dosage following duplication.


Assuntos
Arabidopsis , Magnoliopsida , Metilação de DNA/genética , Filogenia , Genes Duplicados/genética , Magnoliopsida/genética , Evolução Molecular , Arabidopsis/genética , Duplicação Gênica
6.
J Neurochem ; 164(4): 512-528, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36437609

RESUMO

Huntingtin (Htt) is a large protein without clearly defined molecular functions. Mutation in this protein causes Huntington's disease (HD), a fatal inherited neurodegenerative disorder. Identification of Htt-interacting proteins by the traditional approaches including yeast two-hybrid systems and affinity purifications has greatly facilitated the understanding of Htt function. However, these methods eliminated the intracellular spatial information of the Htt interactome during sample preparations. Moreover, the temporal changes of the Htt interactome in response to acute cellular stresses cannot be easily resolved with these approaches. Ascorbate peroxidase (APEX2)-based proximity labeling has been used to spatiotemporally investigate protein-protein interactions in living cells. In this study, we generated stable human SH-SY5Y cell lines expressing full-length Htt23Q and Htt145Q with N-terminus tagged Flag-APEX2 to quantitatively map the spatiotemporal changes of Htt interactome to a mild acute proteotoxic stress. Our data revealed that normal and mutant Htt (muHtt) are associated with distinct intracellular microenvironments. Specifically, mutant Htt is preferentially associated with intermediate filaments and myosin complexes. Furthermore, the dynamic changes of Htt interactomes in response to stress are different between normal and mutant Htt. Vimentin is identified as one of the most significant proteins that preferentially interacts with muHtt in situ. Further functional studies demonstrated that mutant Htt affects the vimentin's function of regulating proteostasis in healthy and HD human neural stem cells. Taken together, our data offer important insights into the molecular functions of normal and mutant Htt by providing a list of Htt-interacting proteins in their natural cellular context for further studies in different HD models.


Assuntos
Doença de Huntington , Células-Tronco Neurais , Neuroblastoma , Humanos , Vimentina/genética , Proteômica , Células-Tronco Neurais/metabolismo , Mutação , Proteína Huntingtina/genética , Doença de Huntington/metabolismo , Microambiente Tumoral
7.
Plant Direct ; 6(12): e457, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36523607

RESUMO

Desiccation tolerance has evolved recurrently in grasses using two unique strategies of either protecting or dismantling the photosynthetic apparatus to minimize photooxidative damage under life without water (anhydrobiosis). Here, we surveyed chromatin architecture and gene expression during desiccation in two closely related grasses with distinguishing desiccation tolerance strategies to identify regulatory dynamics underlying these unique adaptations. In both grasses, we observed a strong association between nearby chromatin accessibility and gene expression in desiccated tissues compared to well-watered, reflecting an unusual chromatin stability under anhydrobiosis. Integration of chromatin accessibility (ATACseq) and expression data (RNAseq) revealed a core desiccation response across these two grasses. This includes many genes with binding sites for the core seed development transcription factor ABI5, supporting the long-standing hypothesis that vegetative desiccation tolerance evolved from rewiring seed pathways. Oropetium thomaeum has a unique set of desiccation induced genes and regulatory elements associated with photoprotection, pigment biosynthesis, and response to high light, reflecting its adaptation of protecting the photosynthetic apparatus under desiccation (homoiochlorophyly). By contrast, Eragrostis nindensis has unique accessible and expressed genes related to chlorophyll catabolism, scavenging of amino acids, and hypoxia, highlighting its poikilochlorophyllous adaptations of dismantling the photosynthetic apparatus and degrading chlorophyll under desiccation. Together, our results highlight the complex regulatory and expression dynamics underlying desiccation tolerance in grasses.

10.
J Urol ; 207(1): 61-69, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34433303

RESUMO

PURPOSE: Low-grade intermediate-risk nonmuscle-invasive bladder cancer (LG IR NMIBC) is a recurrent disease, thus requiring repeated transurethral resection of bladder tumor under general anesthesia. We evaluated the efficacy and safety of UGN-102, a mitomycin-containing reverse thermal gel, as a primary chemoablative therapeutic alternative to transurethral resection of bladder tumor for patients with LG IR NMIBC. MATERIALS AND METHODS: This prospective, phase 2b, open-label, single-arm trial recruited patients with biopsy-proven LG IR NMIBC to receive 6 once-weekly instillations of UGN-102. The primary end point was complete response (CR) rate, defined as the proportion of patients with negative endoscopic examination, negative cytology and negative for-cause biopsy 3 months after treatment initiation. Patients with CR were followed quarterly up to 12 months to assess durability of treatment effect. Safety and adverse events were monitored throughout the trial. RESULTS: A total of 63 patients (38 males and 25 females 33-96 years old) enrolled and received ≥1 instillation of UGN-102. Among the patients 41 (65%) achieved CR at 3 months, of whom 39 (95%), 30 (73%) and 25 (61%) remained disease-free at 6, 9 and 12 months after treatment initiation, respectively. A total of 13 patients had documented recurrences. The probability of durable response 9 months after CR (12 months after treatment initiation) was estimated to be 73% by Kaplan-Meier analysis. Common adverse events (incidence ≥10%) included dysuria, urinary frequency, hematuria, micturition urgency, urinary tract infection and fatigue. CONCLUSIONS: Nonsurgical primary chemoablation of LG IR NMIBC using UGN-102 resulted in significant treatment response with sustained durability. UGN-102 may provide an alternative to repetitive surgery for patients with LG IR NMIBC.


Assuntos
Antibióticos Antineoplásicos/uso terapêutico , Hidrogéis/uso terapêutico , Mitomicina/uso terapêutico , Neoplasias da Bexiga Urinária/tratamento farmacológico , Técnicas de Ablação , Adulto , Idoso , Idoso de 80 Anos ou mais , Antibióticos Antineoplásicos/efeitos adversos , Feminino , Humanos , Hidrogéis/efeitos adversos , Masculino , Pessoa de Meia-Idade , Mitomicina/efeitos adversos , Gradação de Tumores , Invasividade Neoplásica , Estudos Prospectivos , Medição de Risco , Resultado do Tratamento , Neoplasias da Bexiga Urinária/patologia
12.
Appl Plant Sci ; 8(12): e11404, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33344095

RESUMO

PREMISE: Leaf morphology is dynamic, continuously deforming during leaf expansion and among leaves within a shoot. Here, we measured the leaf morphology of more than 200 grapevines (Vitis spp.) over four years and modeled changes in leaf shape along the shoot to determine whether a composite leaf shape comprising all the leaves from a single shoot can better capture the variation and predict species identity compared with individual leaves. METHODS: Using homologous universal landmarks found in grapevine leaves, we modeled various morphological features as polynomial functions of leaf nodes. The resulting functions were used to reconstruct modeled leaf shapes across the shoots, generating composite leaves that comprehensively capture the spectrum of leaf morphologies present. RESULTS: We found that composite leaves are better predictors of species identity than individual leaves from the same plant. We were able to use composite leaves to predict the species identity of previously unassigned grapevines, which were verified with genotyping. DISCUSSION: Observations of individual leaf shape fail to capture the true diversity between species. Composite leaf shape-an assemblage of modeled leaf snapshots across the shoot-is a better representation of the dynamic and essential shapes of leaves, in addition to serving as a better predictor of species identity than individual leaves.

13.
Appl Plant Sci ; 8(8): e11385, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32999772

RESUMO

PREMISE: Maize yields have significantly increased over the past half-century owing to advances in breeding and agronomic practices. Plants have been grown in increasingly higher densities due to changes in plant architecture resulting in plants with more upright leaves, which allows more efficient light interception for photosynthesis. Natural variation for leaf angle has been identified in maize and sorghum using multiple mapping populations. However, conventional phenotyping techniques for leaf angle are low throughput and labor intensive, and therefore hinder a mechanistic understanding of how the leaf angle of individual leaves changes over time in response to the environment. METHODS: High-throughput time series image data from water-deprived maize (Zea mays subsp. mays) and sorghum (Sorghum bicolor) were obtained using battery-powered time-lapse cameras. A MATLAB-based image processing framework, Leaf Angle eXtractor (LAX), was developed to extract and quantify leaf angles from images of maize and sorghum plants under drought conditions. RESULTS: Leaf angle measurements showed differences in leaf responses to drought in maize and sorghum. Tracking leaf angle changes at intervals as short as one minute enabled distinguishing leaves that showed signs of wilting under water deprivation from other leaves on the same plant that did not show wilting during the same time period. DISCUSSION: Automating leaf angle measurements using LAX makes it feasible to perform large-scale experiments to evaluate, understand, and exploit the spatial and temporal variations in plant response to water limitations.

18.
Essays Biochem ; 63(6): 743-755, 2019 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-31652316

RESUMO

Cytosine DNA methylation is prevalent throughout eukaryotes and prokaryotes. While most commonly thought of as being localized to dinucleotide CpG sites, non-CG sites can also be modified. Such non-CG methylation is widespread in plants, occurring at trinucleotide CHG and CHH (H = A, T, or C) sequence contexts. The prevalence of non-CG methylation in plants is due to the plant-specific CHROMOMETHYLASE (CMT) and RNA-directed DNA Methylation (RdDM) pathways. These pathways have evolved through multiple rounds of gene duplication and gene loss, generating epigenomic variation both within and between species. They regulate both transposable elements and genes, ensure genome integrity, and ultimately influence development and environmental responses. In these capacities, non-CG methylation influence and shape plant genomes.


Assuntos
Metilação de DNA/fisiologia , DNA/metabolismo , Fenômenos Fisiológicos Vegetais/genética , DNA/química , DNA (Citosina-5-)-Metiltransferases/metabolismo , Elementos de DNA Transponíveis/fisiologia , Regulação da Expressão Gênica de Plantas/fisiologia , Proteínas de Plantas/metabolismo , Plantas/genética , Reprodução/genética , Estresse Fisiológico/genética
20.
Plant J ; 99(5): 965-977, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31069858

RESUMO

Artificial selection has produced varieties of domesticated maize that thrive in temperate climates around the world. However, the direct progenitor of maize, teosinte, is indigenous only to a relatively small range of tropical and subtropical latitudes and grows poorly or not at all outside of this region. Tripsacum, a sister genus to maize and teosinte, is naturally endemic to the majority of areas in the western hemisphere where maize is cultivated. A full-length reference transcriptome for Tripsacum dactyloides generated using long-read Iso-Seq data was used to characterize independent adaptation to temperate climates in this clade. Genes related to phospholipid biosynthesis, a critical component of cold acclimation in other cold-adapted plant lineages, were enriched among those genes experiencing more rapid rates of protein sequence evolution in T. dactyloides. In contrast with previous studies of parallel selection, we find that there is a significant overlap between the genes that were targets of artificial selection during the adaptation of maize to temperate climates and those that were targets of natural selection in temperate-adapted T. dactyloides. Genes related to growth, development, response to stimulus, signaling, and organelles were enriched in the set of genes identified as both targets of natural and artificial selection.


Assuntos
Aclimatação/fisiologia , Poaceae/genética , Poaceae/fisiologia , Seleção Genética/fisiologia , Zea mays/genética , Zea mays/fisiologia , Temperatura Baixa , Genes de Plantas/genética , Antígenos HLA-G , Redes e Vias Metabólicas , Proteínas de Plantas/genética , Estresse Fisiológico , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...