Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
1.
Methods Cell Biol ; 186: 311-332, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38705605

RESUMO

Spectral flow cytometry has emerged as a significant player in the cytometry marketplace, with the potential for rapid growth. Despite a slow start, the technology has made significant strides in advancing various areas of single-cell analysis utilized by the scientific community. The integration of spectral cytometry into clinical laboratories and diagnostic processes is currently underway and is expected to garner a significant level of widespread acceptance in the near future. However, incorporating a new methodological approach into existing research programs can lead to misunderstandings or even misuse. This chapter offers an introductory yet comprehensive explanation of the scientific principles that form the foundation of spectral cytometry. Specifically, it delves into the unmixing processes that are utilized for data analysis. This overview is designed for those who are new to the field and seeking an informative guide to this exciting emerging technology.


Assuntos
Citometria de Fluxo , Análise de Célula Única , Citometria de Fluxo/métodos , Humanos , Análise de Célula Única/métodos , Animais
2.
PLOS Digit Health ; 3(4): e0000327, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38652722

RESUMO

As the world emerges from the COVID-19 pandemic, there is an urgent need to understand patient factors that may be used to predict the occurrence of severe cases and patient mortality. Approximately 20% of SARS-CoV-2 infections lead to acute respiratory distress syndrome caused by the harmful actions of inflammatory mediators. Patients with severe COVID-19 are often afflicted with neurologic symptoms, and individuals with pre-existing neurodegenerative disease have an increased risk of severe COVID-19. Although collectively, these observations point to a bidirectional relationship between severe COVID-19 and neurologic disorders, little is known about the underlying mechanisms. Here, we analyzed the electronic health records of 471 patients with severe COVID-19 to identify clinical characteristics most predictive of mortality. Feature discovery was conducted by training a regularized logistic regression classifier that serves as a machine-learning model with an embedded feature selection capability. SHAP analysis using the trained classifier revealed that a small ensemble of readily observable clinical features, including characteristics associated with cognitive impairment, could predict in-hospital mortality with an accuracy greater than 0.85 (expressed as the area under the ROC curve of the classifier). These findings have important implications for the prioritization of clinical measures used to identify patients with COVID-19 (and, potentially, other forms of acute respiratory distress syndrome) having an elevated risk of death.

3.
bioRxiv ; 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38617315

RESUMO

In profiling assays, thousands of biological properties are measured in a single test, yielding biological discoveries by capturing the state of a cell population, often at the single-cell level. However, for profiling datasets, it has been challenging to evaluate the phenotypic activity of a sample and the phenotypic consistency among samples, due to profiles' high dimensionality, heterogeneous nature, and non-linear properties. Existing methods leave researchers uncertain where to draw boundaries between meaningful biological response and technical noise. Here, we developed a statistical framework that uses the well-established mean average precision (mAP) as a single, data-driven metric to bridge this gap. We validated the mAP framework against established metrics through simulations and real-world data applications, revealing its ability to capture subtle and meaningful biological differences in cell state. Specifically, we used mAP to assess both phenotypic activity for a given perturbation (or a sample) as well as consistency within groups of perturbations (or samples) across diverse high-dimensional datasets. We evaluated the framework on different profile types (image, protein, and mRNA profiles), perturbation types (CRISPR gene editing, gene overexpression, and small molecules), and profile resolutions (single-cell and bulk). Our open-source software allows this framework to be applied to identify interesting biological phenomena and promising therapeutics from large-scale profiling data.

4.
Molecules ; 28(16)2023 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-37630339

RESUMO

The issue of food fraud has become a significant global concern as it affects both the quality and safety of food products, ultimately resulting in the loss of customer trust and brand loyalty. To address this problem, we have developed an innovative approach that can tackle various types of food fraud, including adulteration, substitution, and dilution. Our methodology utilizes an integrated system that combines laser-induced breakdown spectroscopy (LIBS) and Raman spectroscopy. Although both techniques emerged as valuable tools for food analysis, they have until now been used separately, and their combined potential in food fraud has not been thoroughly tested. The aim of our study was to demonstrate the potential benefits of integrating Raman and LIBS modalities in a portable system for improved product classification and subsequent authentication. In pursuit of this objective, we designed and tested a compact, hybrid Raman/LIBS system, which exhibited distinct advantages over the individual modalities. Our findings illustrate that the combination of these two modalities can achieve higher accuracy in product classification, leading to more effective and reliable product authentication. Overall, our research highlights the potential of hybrid systems for practical applications in a variety of industries. The integration and design were mainly focused on the detection and characterization of both elemental and molecular elements in various food products. Two different sets of solid food samples (sixteen Alpine-style cheeses and seven brands of Arabica coffee beans) were chosen for the authentication analysis. Class detection and classification were accomplished through the use of multivariate feature selection and machine-learning procedures. The accuracy of classification was observed to improve by approximately 10% when utilizing the hybrid Raman/LIBS spectra, as opposed to the analysis of spectra from the individual methods. This clearly demonstrates that the hybrid system can significantly improve food authentication accuracy while maintaining the portability of the combined system. Thus, the successful implementation of a hybrid Raman-LIBS technique is expected to contribute to the development of novel portable devices for food authentication in food as well as other various industries.


Assuntos
Queijo , Análise Espectral Raman , Contaminação de Medicamentos , Fraude , Indústrias
5.
Toxicol Appl Pharmacol ; 476: 116659, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37604412

RESUMO

Modern toxicology's throughput has dramatically increased due to alternative models, laboratory automation, and machine learning. This has enabled comparative studies across species and assays to prioritize chemical hazard potential and to understand how different model systems might complement one another. However, such comparative studies of high-throughput data are still in their infancy, with more groundwork needed to firmly establish the approach. Therefore, this study aimed to compare the bioactivity of the NIEHS Division of Translational Toxicology's (DTT) 87-compound developmental neurotoxicant (DNT) library in zebrafish and an in vitro high-throughput cell culture system. The early life-stage zebrafish provided a whole animal approach to developmental toxicity assessment. Chemical hits for abnormalities in embryonic zebrafish morphology, mortality, and behavior (ZBEscreen™) were compared with chemicals classified as high-risk by the Cell Health Index (CHI™), which is an outcome class probability from a machine learning classifier using 12 parameters from the SYSTEMETRIC® Cell Health Screen (CHS). The CHS was developed to assess human toxicity risk using supervised machine learning to classify acute cell stress phenotypes in a human leukemia cell line (HL60 cells) following a 4-h exposure to a chemical of interest. Due to the design of the screen, the zebrafish assays were more exhaustive, yielding 86 total bioactive hits, whereas the SYSTEMETRIC® CHS focusing on acute toxicity identified 20 chemicals as potentially toxic. The zebrafish embryonic and larval photomotor response assays (EPR and LPR, respectively) detected 40 of the 47 chemicals not found by the zebrafish morphological screen and CHS. Collectively, these results illustrate the advantages of using two alternative models in tandem for rapid hazard assessment and chemical prioritization and the effectiveness of CHI™ in identifying toxicity within a single multiparametric assay.


Assuntos
Leucemia , Peixe-Zebra , Animais , Humanos , Bioensaio , Células HL-60 , Larva
6.
Cells ; 12(14)2023 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-37508539

RESUMO

Unmasking the subtleties of the immune system requires both a comprehensive knowledge base and the ability to interrogate that system with intimate sensitivity. That task, to a considerable extent, has been handled by an iterative expansion in flow cytometry methods, both in technological capability and also in accompanying advances in informatics. As the field of fluorescence-based cytomics matured, it reached a technological barrier at around 30 parameter analyses, which stalled the field until spectral flow cytometry created a fundamental transformation that will likely lead to the potential of 100 simultaneous parameter analyses within a few years. The simultaneous advance in informatics has now become a watershed moment for the field as it competes with mature systematic approaches such as genomics and proteomics, allowing cytomics to take a seat at the multi-omics table. In addition, recent technological advances try to combine the speed of flow systems with other detection methods, in addition to fluorescence alone, which will make flow-based instruments even more indispensable in any biological laboratory. This paper outlines current approaches in cell analysis and detection methods, discusses traditional and microfluidic sorting approaches as well as next-generation instruments, and provides an early look at future opportunities that are likely to arise.


Assuntos
Genômica , Proteômica , Citometria de Fluxo/métodos , Tecnologia , Microfluídica
7.
Sensors (Basel) ; 23(7)2023 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-37050545

RESUMO

The elastic light-scatter (ELS) technique, which detects and discriminates microbial organisms based on the light-scatter pattern of their colonies, has demonstrated excellent classification accuracy in pathogen screening tasks. The implementation of the multispectral approach has brought further advantages and motivated the design and validation of a hyperspectral elastic light-scatter phenotyping instrument (HESPI). The newly developed instrument consists of a supercontinuum (SC) laser and an acousto-optic tunable filter (AOTF). The use of these two components provided a broad spectrum of excitation light and a rapid selection of the wavelength of interest, which enables the collection of multiple spectral patterns for each colony instead of relying on single band analysis. The performance was validated by classifying microflora of green-leafed vegetables using the hyperspectral ELS patterns of the bacterial colonies. The accuracy ranged from 88.7% to 93.2% when the classification was performed with the scattering pattern created at a wavelength within the 473-709 nm region. When all of the hyperspectral ELS patterns were used, owing to the vastly increased size of the data, feature reduction and selection algorithms were utilized to enhance the robustness and ultimately lessen the complexity of the data collection. A new classification model with the feature reduction process improved the overall classification rate to 95.9%.


Assuntos
Bactérias , Elasticidade , Luz , Fenômenos Fisiológicos Bacterianos , Algoritmos
8.
Front Neurosci ; 17: 1072779, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36968498

RESUMO

A thorough understanding of the neuroanatomy of peripheral nerves is required for a better insight into their function and the development of neuromodulation tools and strategies. In biophysical modeling, it is commonly assumed that the complex spatial arrangement of myelinated and unmyelinated axons in peripheral nerves is random, however, in reality the axonal organization is inhomogeneous and anisotropic. Present quantitative neuroanatomy methods analyze peripheral nerves in terms of the number of axons and the morphometric characteristics of the axons, such as area and diameter. In this study, we employed spatial statistics and point process models to describe the spatial arrangement of axons and Sinkhorn distances to compute the similarities between these arrangements (in terms of first- and second-order statistics) in various vagus and pelvic nerve cross-sections. We utilized high-resolution transmission electron microscopy (TEM) images that have been segmented using a custom-built high-throughput deep learning system based on a highly modified U-Net architecture. Our findings show a novel and innovative approach to quantifying similarities between spatial point patterns using metrics derived from the solution to the optimal transport problem. We also present a generalizable pipeline for quantitative analysis of peripheral nerve architecture. Our data demonstrate differences between male- and female-originating samples and similarities between the pelvic and abdominal vagus nerves.

9.
Sensors (Basel) ; 23(4)2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36850732

RESUMO

Real-time detection and disinfection of foodborne pathogens are important for preventing foodborne outbreaks and for maintaining a safe environment for consumers. There are numerous methods for the disinfection of hazardous organisms, including heat treatment, chemical reaction, filtration, and irradiation. This report evaluated a portable instrument to validate its simultaneous detection and disinfection capability in typical laboratory situations. In this challenging study, three gram-negative and two gram-positive microorganisms were used. For the detection of contamination, inoculations of various concentrations were dispensed on three different surface types to estimate the performance for minimum-detectable cell concentration. Inoculations higher than 103~104 CFU/mm2 and 0.15 mm of detectable contaminant size were estimated to generate a sufficient level of fluorescence signal. The evaluation of disinfection efficacy was conducted on three distinct types of surfaces, with the energy density of UVC light (275-nm) ranging from 4.5 to 22.5 mJ/cm2 and the exposure time varying from 1 to 5 s. The study determined the optimal energy dose for each of the microorganisms species. In addition, surface characteristics may also be an important factor that results in different inactivation efficacy. These results demonstrate that the proposed portable device could serve as an in-field detection and disinfection unit in various environments, and provide a more efficient and user-friendly way of performing disinfection on large surface areas.


Assuntos
Desinfecção , Filtração , Fenômenos Físicos , Surtos de Doenças , Contaminação de Medicamentos
10.
Foods ; 12(2)2023 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-36673494

RESUMO

Laser-induced breakdown spectroscopy (LIBS) is an atomic-emission spectroscopy technique that employs a focused laser beam to produce microplasma. Although LIBS was designed for applications in the field of materials science, it has lately been proposed as a method for the compositional analysis of agricultural goods. We deployed commercial handheld LIBS equipment to illustrate the performance of this promising optical technology in the context of food authentication, as the growing incidence of food fraud necessitates the development of novel portable methods for detection. We focused on regional agricultural commodities such as European Alpine-style cheeses, coffee, spices, balsamic vinegar, and vanilla extracts. Liquid examples, including seven balsamic vinegar products and six representatives of vanilla extract, were measured on a nitrocellulose membrane. No sample preparation was required for solid foods, which consisted of seven brands of coffee beans, sixteen varieties of Alpine-style cheeses, and eight different spices. The pre-processed and standardized LIBS spectra were used to train and test the elastic net-regularized multinomial classifier. The performance of the portable and benchtop LIBS systems was compared and described. The results indicate that field-deployable, portable LIBS devices provide a robust, accurate, and simple-to-use platform for agricultural product verification that requires minimal sample preparation, if any.

11.
Adv Physiol Educ ; 47(1): 1-12, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36302139

RESUMO

This study assessed the impact of an "active learning" strategy employed alone or in combination with traditional lectures on the learning of mammalian physiology by undergraduate students. The study investigated the impact of three teaching strategies, namely 1) traditional lecture, 2) group discussion alone, and 3) combination of lecture and group discussion. For all strategies, students were given homework in a textbook and they completed written assignments before each session. Every student led the discussion of at least one assigned theme during each group session. The students had no access to the textbook or notes during group discussions. Four examinations (3 in-semester and a final) assessed the students' knowledge of fundamental concepts of physiology of specific organ systems. Part of the final examination reassessed knowledge of previously tested topics. The results show that the teaching modality employed to introduce physiology topics influenced students' learning. The average marginal effect of the lecture + discussion modality (average improvement linked to lecture + discussion strategy) on students' performance was 6.45% [95% confidence interval (CI95) (4.73, 8.16), P = 1.74 × 10-13], and the average improvement associated with the discussion-only modality was 5.5% [CI95 (3.84, 7.16), P = 7.84 × 10-11]. On average, all class ranks performed better on materials covered under active learning settings than under lecture-only conditions. Moreover, students' performance under combined lecture and discussion conditions is predictive of their overall performance in the course. The results support the positive effect of student-centered learning and demonstrate the efficacy of a combination of lectures and group discussions on learning of physiology by nonmajor students.NEW & NOTEWORTHY The purpose of this study was to evaluate the effect of group discussion on the learning of mammalian physiology by nonmajor undergraduate students. Combining traditional lectures with group discussions increased the active participation of students in class and improved their learning of physiology, as measured by the results of in-semester and final examinations. The active learning technique benefited all class ranks on average.


Assuntos
Avaliação Educacional , Fisiologia , Animais , Humanos , Aprendizagem Baseada em Problemas/métodos , Estudantes , Currículo , Ensino , Fisiologia/educação , Mamíferos
12.
Sensors (Basel) ; 22(7)2022 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-35408260

RESUMO

We present a smartphone-based bacterial colony phenotyping instrument using a reflective elastic light scattering (ELS) pattern and the resolving power of the new instrument. The reflectance-type device can acquire ELS patterns of colonies on highly opaque media as well as optically dense colonies. The novel instrument was built using a smartphone interface and a 532 nm diode laser, and these essential optical components made it a cost-effective and portable device. When a coherent and collimated light source illuminated a bacterial colony, a reflective ELS pattern was created on the screen and captured by the smartphone camera. The collected patterns whose shapes were determined by the colony morphology were then processed and analyzed to extract distinctive features for bacterial identification. For validation purposes, the reflective ELS patterns of five bacteria grown on opaque growth media were measured with the proposed instrument and utilized for the classification. Cross-validation was performed to evaluate the classification, and the result showed an accuracy above 94% for differentiating colonies of E. coli, K. pneumoniae, L. innocua, S. enteritidis, and S. aureus.


Assuntos
Escherichia coli , Dispositivos Ópticos , Bactérias , Meios de Cultura , Smartphone , Staphylococcus aureus
13.
J Vet Dent ; 39(2): 122-132, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35257605

RESUMO

Oral health conditions (eg, plaque, calculus, gingivitis) cause morbidity and pain in companion animals. Thus, developing technologies that can ameliorate the accumulation of oral biofilm, a critical factor in the progression of these conditions, is vital. Quantitative light-induced fluorescence (QLF) is a method to quantify oral substrate accumulation, and therefore, it can assess biofilm attenuation of different products. New software has recently been developed that automates aspects of the procedure. However, few QLF studies in companion animals have been performed. QLF was used to collect digital images of oral substrate accumulation on the teeth of dogs and cats to demonstrate the ability of QLF to discriminate between foods known to differentially inhibit oral substrate accumulation. Images were taken as a function of time and diet. Software developed by the Cytometry Laboratory, Purdue University quantified biofilm coverage. Intra- and intergrader reproducibility was also assessed, as was a comparison of the results of the QLF software with those of an experienced grader using undisclosed coverage-only metrics similar to those used for the Logan and Boyce index. Quantification of oral substrate accumulation using QLF-derived images demonstrated the ability to distinguish between dental diets known to differentially inhibit oral biofilm accumulation. Little variance in intra- and intergrader reproducibility was observed, and the comparison between the experienced Logan and Boyce grader and the QLF software yielded a concordance correlation coefficient of 0.89 (95% CI = 0.84, 0.92). These results show that QLF is a useful tool that allows the semi-automated quantification of the accumulation of oral biofilm in companion animals.


Assuntos
Doenças do Gato , Cárie Dentária , Doenças do Cão , Fluorescência Quantitativa Induzida por Luz , Animais , Biofilmes , Doenças do Gato/diagnóstico , Gatos , Cárie Dentária/veterinária , Doenças do Cão/diagnóstico , Cães , Fluorescência , Humanos , Luz , Fluorescência Quantitativa Induzida por Luz/veterinária , Reprodutibilidade dos Testes
14.
Sci Rep ; 12(1): 1198, 2022 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-35075171

RESUMO

Axonal characterizations of connectomes in healthy and disease phenotypes are surprisingly incomplete and biased because unmyelinated axons, the most prevalent type of fibers in the nervous system, have largely been ignored as their quantitative assessment quickly becomes unmanageable as the number of axons increases. Herein, we introduce the first prototype of a high-throughput processing pipeline for automated segmentation of unmyelinated fibers. Our team has used transmission electron microscopy images of vagus and pelvic nerves in rats. All unmyelinated axons in these images are individually annotated and used as labeled data to train and validate a deep instance segmentation network. We investigate the effect of different training strategies on the overall segmentation accuracy of the network. We extensively validate the segmentation algorithm as a stand-alone segmentation tool as well as in an expert-in-the-loop hybrid segmentation setting with preliminary, albeit remarkably encouraging results. Our algorithm achieves an instance-level [Formula: see text] score of between 0.7 and 0.9 on various test images in the stand-alone mode and reduces expert annotation labor by 80% in the hybrid setting. We hope that this new high-throughput segmentation pipeline will enable quick and accurate characterization of unmyelinated fibers at scale and become instrumental in significantly advancing our understanding of connectomes in both the peripheral and the central nervous systems.


Assuntos
Aprendizado Profundo , Processamento de Imagem Assistida por Computador/métodos , Microscopia Eletrônica de Transmissão , Fibras Nervosas Amielínicas/ultraestrutura , Animais , Ratos
15.
Cell Mol Gastroenterol Hepatol ; 13(1): 309-337.e3, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34509687

RESUMO

BACKGROUND & AIMS: Colonic motor patterns have been described by a number of different groups, but the neural connectivity and ganglion architecture supporting patterned motor activity have not been elucidated. Our goals were to describe quantitatively, by region, the structural architecture of the mouse enteric nervous system and use functional calcium imaging, pharmacology, and electrical stimulation to show regional underpinnings of different motor patterns. METHODS: Excised colon segments from mice expressing the calcium indicator GCaMP6f or GCaMP6s were used to examine spontaneous and evoked (pharmacologic or electrical) changes in GCaMP-mediated fluorescence and coupled with assessment of colonic motor activity, immunohistochemistry, and confocal imaging. Three-dimensional image reconstruction and statistical methods were used to describe quantitatively mouse colon myenteric ganglion structure, neural and vascular network patterning, and neural connectivity. RESULTS: In intact colon, regionally specific myenteric ganglion size, architecture, and neural circuit connectivity patterns along with neurotransmitter-receptor expression underlie colonic motor patterns that define functional differences along the colon. Region-specific effects on spontaneous, evoked, and chemically induced neural activity contribute to regional motor patterns, as does intraganglionic functional connectivity. We provide direct evidence of neural circuit structural and functional regional differences that have only been inferred in previous investigations. We include regional comparisons between quantitative measures in mouse and human colon that represent an important advance in showing the usefulness and relevance of the mouse system for translation to the human colon. CONCLUSIONS: There are several neural mechanisms dependent on myenteric ganglion architecture and functional connectivity that underlie neurogenic control of patterned motor function in the mouse colon.


Assuntos
Sistema Nervoso Entérico , Motilidade Gastrointestinal , Animais , Colo , Camundongos
16.
Metabolites ; 11(10)2021 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-34677385

RESUMO

Lipids play a critical role in the skin as components of the epidermal barrier and as signaling and antimicrobial molecules. Atopic dermatitis in dogs is associated with changes in the lipid composition of the skin, but whether these precede or follow the onset of dermatitis is unclear. We applied rapid lipid-profiling mass spectrometry to skin and blood of 30 control and 30 atopic dogs. Marked differences in lipid profiles were observed between control, nonlesional, and lesional skin. The lipid composition of blood from control and atopic dogs was different, indicating systemic changes in lipid metabolism. Female and male dogs differed in the degree of changes in the skin and blood lipid profiles. Treatment with oclacitinib or lokivetmab ameliorated the skin condition and caused changes in skin and blood lipids. A set of lipid features of the skin was selected as a biomarker that classified samples as control or atopic dermatitis with 95% accuracy, whereas blood lipids discriminated between control and atopic dogs with 90% accuracy. These data suggest that canine atopic dermatitis is a systemic disease and support the use of rapid lipid profiling to identify novel biomarkers.

17.
J Pharmacol Toxicol Methods ; 111: 107088, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34144174

RESUMO

Excipients serve as vehicles, preservatives, solubilizers, and colorants for drugs, food, and cosmetics. They are considered to be inert at biological targets; however, several reports suggest that some could interact with human targets and cause unwanted effects. We investigated 40 commonly used drug excipients for cellular stress in the AsedaSciences® SYSTEMETRIC® Cell Health Screen, which was developed to estimate toxicity risk of small molecular entities (SMEs). The screen uses supervised machine learning (ML) to classify test compound cell stress phenotypes relative to a training set of on-market and withdrawn drugs. While 80% (n = 32) of the excipients did not show elevated risk in a broad, but pharmacologically relevant, concentration range (5 nM to 100 µM), we identified 20% (n = 8) with elevated risk. This group included two mercury containing preservatives, propyl gallate, methylene blue, benzethonium chloride, and cetylpyridinium chloride, all known for previously reported safety issues. All compounds were tested in parallel in an in vitro assay panel regularly used to investigate off-target effects of drug candidates. Target engagement in this assay panel confirmed risk-indicative biological activity for the same excipients, except propyl gallate, which may have a separate, interesting mechanism. We conclude that the SYSTEMETRIC Cell Health Screen, in conjunction with in vitro pharmacological profiling, can provide a fast and cost effective methodology for first line testing of SMEs, including excipients, to avoid cellular damage, particularly in the GI, where they are represented in high concentrations.


Assuntos
Excipientes , Conservantes Farmacêuticos , Excipientes/toxicidade , Humanos , Aprendizado de Máquina Supervisionado
18.
PLoS One ; 16(2): e0247721, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33630969

RESUMO

A single instrument that includes multiple optical channels was developed to simultaneously measure various optical and associated biophysical characteristics of a bacterial colony. The multi-channel device can provide five distinct optical features without the need to transfer the sample to multiple locations or instruments. The available measurement channels are bright-field light microscopy, 3-D colony-morphology map, 2-D spatial optical-density distribution, spectral forward-scattering pattern, and spectral optical density. The series of multiple morphological interrogations is beneficial in understanding the bio-optical features of a bacterial colony and the correlations among them, resulting in an enhanced power of phenotypic bacterial discrimination. To enable a one-shot interrogation, a confocal laser scanning module was built as an add-on to an upright microscope. Three different-wavelength diode lasers were used for the spectral analysis, and high-speed pin photodiodes and CMOS sensors were utilized as detectors to measure the spectral OD and light-scatter pattern. The proposed instrument and algorithms were evaluated with four bacterial genera, Escherichia coli, Listeria innocua, Salmonella Typhimurium, and Staphylococcus aureus; their resulting data provided a more complete picture of the optical characterization of bacterial colonies.


Assuntos
Bactérias/crescimento & desenvolvimento , Microscopia/instrumentação
19.
PLoS Pathog ; 17(2): e1009260, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33524040

RESUMO

Epidemiological studies have identified a correlation between maternal helminth infections and reduced immunity to some early childhood vaccinations, but the cellular basis for this is poorly understood. Here, we investigated the effects of maternal Schistosoma mansoni infection on steady-state offspring immunity, as well as immunity induced by a commercial tetanus/diphtheria vaccine using a dual IL-4 reporter mouse model of maternal schistosomiasis. We demonstrate that offspring born to S. mansoni infected mothers have reduced circulating plasma cells and peripheral lymph node follicular dendritic cells at steady state. These reductions correlate with reduced production of IL-4 by iNKT cells, the cellular source of IL-4 in the peripheral lymph node during early life. These defects in follicular dendritic cells and IL-4 production were maintained long-term with reduced secretion of IL-4 in the germinal center and reduced generation of TFH, memory B, and memory T cells in response to immunization with tetanus/diphtheria. Using single-cell RNASeq following tetanus/diphtheria immunization of offspring, we identified a defect in cell-cycle and cell-proliferation pathways in addition to a reduction in Ebf-1, a key B-cell transcription factor, in the majority of follicular B cells. These reductions are dependent on the presence of egg antigens in the mother, as offspring born to single-sex infected mothers do not have these transcriptional defects. These data indicate that maternal schistosomiasis leads to long-term defects in antigen-induced cellular immunity, and for the first time provide key mechanistic insight into the factors regulating reduced immunity in offspring born to S. mansoni infected mothers.


Assuntos
Linfócitos B/imunologia , Interleucina-4/imunologia , Complicações Parasitárias na Gravidez/imunologia , Esquistossomose mansoni/imunologia , Animais , Animais Recém-Nascidos/imunologia , Vacina contra Difteria e Tétano/imunologia , Feminino , Memória Imunológica , Linfonodos/imunologia , Masculino , Camundongos , Células T Matadoras Naturais/imunologia , Gravidez , Efeitos Tardios da Exposição Pré-Natal/imunologia , Efeitos Tardios da Exposição Pré-Natal/parasitologia , RNA-Seq , Células Estromais/imunologia
20.
Am J Physiol Regul Integr Comp Physiol ; 320(3): R331-R341, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33470183

RESUMO

Gastric electrical stimulation (GES) is used clinically to promote proximal GI emptying and motility. In acute experiments, we measured duodenal motor responses elicited by GES applied at 141 randomly chosen electrode sites on the stomach serosal surface. Overnight-fasted (H2O available) anesthetized male rats (n = 81) received intermittent biphasic GES for 5 min (20-s-on/40-s-off cycles; I = 0.3 mA; pw = 0.2 ms; 10 Hz). A strain gauge on the serosal surface of the proximal duodenum of each animal was used to evaluate baseline motor activity and the effect of GES. Using ratios of time blocks compared with a 15-min prestimulation baseline, we evaluated the effects of the 5-min stimulation on concurrent activity, on the 10 min immediately after the stimulation, and on the 15-min period beginning with the onset of stimulation. We mapped the magnitude of the duodenal response (three different motility indices) elicited from the 141 stomach sites. Post hoc electrode site maps associated with duodenal responses suggested three zones similar to the classic regions of forestomach, corpus, and antrum. Maximal excitatory duodenal motor responses were elicited from forestomach sites, whereas inhibitory responses occurred with stimulation of the corpus. Moderate excitatory duodenal responses occurred with stimulation of the antrum. Complex, weak inhibitory/excitatory responses were produced by stimulation at boundaries between stomach regions. Patterns of GES efficacies coincided with distributions of previously mapped vagal afferents, suggesting that excitation of the duodenum is strongest when GES electrodes are situated over stomach concentrations of vagal intramuscular arrays, putative stretch receptors in the muscle wall.


Assuntos
Duodeno/inervação , Estimulação Elétrica , Sistema Nervoso Entérico/fisiologia , Esvaziamento Gástrico , Motilidade Gastrointestinal , Estômago/inervação , Animais , Masculino , Fusos Musculares/fisiologia , Fibras Nervosas Amielínicas/fisiologia , Inibição Neural , Pressão , Ratos Sprague-Dawley , Reflexo , Fatores de Tempo , Nervo Vago/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...