Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 189
Filtrar
1.
Soft Matter ; 20(36): 7122-7132, 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39193982

RESUMO

Understanding and control of the effective interaction between nanoscale building blocks (colloids or nanoparticles) dispersed in a solvent is an important prerequisite for the development of bottom-up design strategies for soft functional materials. Here, we have employed all-atom molecular dynamics simulations to investigate the impact of polymer grafting on the solvent-mediated effective interaction between the silica nanoparticles (Si-NPs) in water, and in turn, on its bulk structural and thermodynamic properties. We found that the nature of the short grafting polymers [characterized by their interaction with water (hydrophobicity or hydrophilicity) and molecular weight] has a profound effect on the range and strength of the effective interaction between the Si-NPs. The hydrophobic polymer [such as polyethylene (PE)]-grafting of Si-NP gives rise to a more attractive interaction between the Si-NPs compared to the hydrophilic polymer [such as polyethylene glycol (PEG)] and non-grafted cases. This study further provides fundamental insights into the molecular origin of the observed behavior of the effective pair interactions between the grafted Si-NPs. For PE-grafted Si-NPs, the confined water (water inside the cavity formed by a pair of Si-NPs) undergoes a partial dewetting transition on approaching below a critical inter-particle separation leading to a stronger attractive interaction. Furthermore, we report that the effective attraction between the PE-grafted Si-NPs can be reliably controlled by changing the grafting PE density. We have also investigated the bulk structural and thermodynamic behavior of the coarse-grained Si-NP system where the particles interact via effective interaction in the absence of water. We believe that the insights gained from this work are important prerequisites for formulating rational bottom-up design strategies for functional materials where nano- (or, colloidal) particles are the building blocks.

2.
Chem Biodivers ; : e202400715, 2024 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-38825566

RESUMO

Herein, we report the anti-malarial, anti-bacterial and anti-inflammatory activities of the N2O2 donor tetradentate salen type ligand and its CoL, NiL, and CuL metal complexes. The synthesized compounds were characterized by various spectroscopic analytical methods. The in-vitro anti-malarial investigations revealed that the complex CuL exhibited equipotency with quinine drug having IC50 value 0.25 µg/mL. The compound L showed significant inhibition of bacterial spp. viz. E. Coli, P. Aeruginosa, and S. Aureus (MIC=12.5-50 µg/mL), while the compound CoL (MIC=12.5 µg/mL) exhibited potency against gram-positive bacteria. In the in-vitro anti-inflammatory study, the compound CuL displayed moderate activity than other tested compounds. The compound CuL showed the highest anti-malarial docking score with enzyme pLDH at -8.12 Kcal/mol. The DFT study also gives authentication of higher antimalarial activity of CuL due to high dipole moment. None of the potent compounds was found cytotoxic towards vero cell lines.

3.
ACS Omega ; 9(24): 25859-25869, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38911711

RESUMO

Penicillin V (phenoxy methyl penicillin) is highly sought after among natural penicillins because of its exceptional acid stability and effectiveness against common skin and respiratory infections. Given its wide-ranging therapeutic uses, there is a need to establish a greener method for its maximum recovery to reduce the carbon footprint. Here, we have identified and validated optimized operational conditions for resin-based penicillin V recovery. It was observed that Amberlite XAD4 had the highest penicillin V hydrophobic adsorption capacity among the other screened resins. Kinetic and isothermal studies using linear and nonlinear regression analysis showed that the adsorption process well fitted with pseudo-second-order kinetics (R 2 = 0.9816) and the Freundlich adsorption isotherm model (R 2 = 0.9871). Adsorption equilibrium was attained within 4 h, while maximum adsorption was observed at 3 mg/mL penicillin V concentration. Furthermore, the optimized extraction protocol was compared with the conventional butyl acetate-based downstream processing. Under optimum conditions resin-based penicillin V recovery was 2-fold higher as compared to the solvent extraction method and the resin could be reused for over six cycles without compromising the yield. These findings signify substantial progress toward the development of an environmentally sustainable approach for penicillin V recovery and a potentially viable method for extractive fermentation.

4.
J Chem Ecol ; 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38888642

RESUMO

Helicoverpa armigera exhibits extensive variability in feeding habits and food selection. Neuronal regulation of H. armigera feeding behavior is primarily influenced by biogenic amines such as Tyramine (TA) and Octopamine (OA). The molecular responses of H. armigera to dietary challenges in the presence of TA or OA have yet to be studied. This investigation dissects the impact of OA and TA on H. armigera feeding choices and behaviors under non-host nutritional stress. It has been observed that feeding behavior remains unaltered during the exogenous administration of OA and TA through an artificial diet (AD). Ingestion of higher OA or TA concentrations leads to increased mortality. OA and TA treatment in combination with host and non-host diets results in the induction of feeding and higher locomotion toward food, particularly in the case of TA treatment. Increased expression of markers, prominin-like, and tachykinin-related peptide receptor-like transcripts further assessed increased locomotion activity. Insects subjected to a non-host diet with TA treatment exhibited increased feeding and overexpression of the feeding indicator, the Neuropeptide F receptor, and the feeding regulator, Sulfakinin, compared with other conditions. Expression of sensation and biogenic amine synthesis genesis elevated in insects fed a non-host diet in combination with OA or TA. Metabolomics analysis revealed a decreased concentration of the feeding behavior elicitor, dopamine, in insects fed a non-host diet containing TA. This work highlights the complex interplay between biogenic amine functions during dietary stress and suggests the role of tyramine in feeding promotion under stressed conditions.

5.
Cells ; 13(10)2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38786043

RESUMO

Epigenetic alterations that lead to differential expression of microRNAs (miRNAs/miR) are known to regulate tumour cell states, epithelial-mesenchymal transition (EMT) and the progression to metastasis in breast cancer. This study explores the key contribution of miRNA-18a in mediating a hybrid E/M cell state that is pivotal to the malignant transformation and tumour progression in the aggressive ER-negative subtype of breast cancer. The expression status and associated effects of miR-18a were evaluated in patient-derived breast tumour samples in combination with gene expression data from public datasets, and further validated in in vitro and in vivo breast cancer model systems. The clinical relevance of the study findings was corroborated against human breast tumour specimens (n = 446 patients). The down-regulated expression of miR-18a observed in ER-negative tumours was found to drive the enrichment of hybrid epithelial/mesenchymal (E/M) cells with luminal attributes, enhanced traits of migration, stemness, drug-resistance and immunosuppression. Further analysis of the miR-18a targets highlighted possible hypoxia-inducible factor 1-alpha (HIF-1α)-mediated signalling in these tumours. This is a foremost report that validates the dual role of miR-18a in breast cancer that is subtype-specific based on hormone receptor expression. The study also features a novel association of low miR-18a levels and subsequent enrichment of hybrid E/M cells, increased migration and stemness in a subgroup of ER-negative tumours that may be attributed to HIF-1α mediated signalling. The results highlight the possibility of stratifying the ER-negative disease into clinically relevant groups by analysing miRNA signatures.


Assuntos
Neoplasias da Mama , Transição Epitelial-Mesenquimal , Regulação Neoplásica da Expressão Gênica , MicroRNAs , MicroRNAs/genética , MicroRNAs/metabolismo , Humanos , Transição Epitelial-Mesenquimal/genética , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Neoplasias da Mama/metabolismo , Feminino , Progressão da Doença , Receptores de Estrogênio/metabolismo , Receptores de Estrogênio/genética , Linhagem Celular Tumoral , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Fenótipo , Animais , Camundongos , Movimento Celular/genética
6.
J Chem Phys ; 160(19)2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38747939

RESUMO

In recent years, much attention has been devoted to understanding the pathways of phase transition between two equilibrium condensed phases (such as liquids and solids). However, the microscopic pathways of transition involving non-equilibrium, non-diffusive amorphous (glassy) phases still remain poorly understood. In this work, we have employed computer simulations, persistence homology (a tool rooted in topological data analysis), and machine learning to probe the microscopic pathway of pressure-induced non-equilibrium transition between the low- and high-density amorphous (LDA and HDA, respectively) ice phases of the TIP4P/2005 and ST2 water models. Using persistence homology and machine learning, we introduced a new order parameter that unambiguously identifies the LDA- and HDA-like local environments. The LDA phase transitions continuously and collectively into the corresponding HDA phase via a pre-ordered intermediate phase during the isothermal compression. The local order parameter susceptibilities show a maximum near the transition pressure (P*)-suggesting maximum structural heterogeneities near P*. The HDA-like clusters are structurally ramified and spatially delocalized inside the LDA phase near the transition pressure. We also found manifestations of the first-order low-density to high-density liquid transition in the sharpness of the order parameter change during the LDA to HDA transition. We further investigated the (geometrical) structures and topologies of the LDA and HDA ices formed via different protocols and also studied the dependence of the (microscopic) pathway of phase transition on the protocol followed to prepare the initial LDA phase. Finally, the method adopted here to study the phase transition pathways is not restricted to the system under consideration and provides a robust way of probing phase transition pathways involving any two condensed phases at both equilibrium and out-of-equilibrium conditions.

7.
Plant J ; 119(1): 176-196, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38575203

RESUMO

4-Coumarate-CoA Ligase (4CL) is an important enzyme in the phenylpropanoid biosynthesis pathway. Multiple 4CLs are identified in Ocimum species; however, their in planta functions remain enigmatic. In this study, we independently overexpressed three Ok4CL isoforms from Ocimum kilimandscharicum (Ok4CL7, -11, and -15) in Nicotiana benthamiana. Interestingly, Ok4CL11 overexpression (OE) caused a rootless or reduced root growth phenotype, whereas overexpression of Ok4CL15 produced normal adventitious root (AR) growth. Ok4CL11 overexpression in N. benthamiana resulted in upregulation of genes involved in flavonoid biosynthesis and associated glycosyltransferases accompanied by accumulation of specific flavonoid-glycosides (kaempferol-3-rhamnoside, kaempferol-3,7-O-bis-alpha-l-rhamnoside [K3,7R], and quercetin-3-O-rutinoside) that possibly reduced auxin levels in plants, and such effects were not seen for Ok4CL7 and -15. Docking analysis suggested that auxin transporters (PINs/LAXs) have higher binding affinity to these specific flavonoid-glycosides, and thus could disrupt auxin transport/signaling, which cumulatively resulted in a rootless phenotype. Reduced auxin levels, increased K3,7R in the middle and basal stem sections, and grafting experiments (intra and inter-species) indicated a disruption of auxin transport by K3,7R and its negative effect on AR development. Supplementation of flavonoids and the specific glycosides accumulated by Ok4CL11-OE to the wild-type N. benthamiana explants delayed the AR emergence and also inhibited AR growth. While overexpression of all three Ok4CLs increased lignin accumulation, flavonoids, and their specific glycosides were accumulated only in Ok4CL11-OE lines. In summary, our study reveals unique indirect function of Ok4CL11 to increase specific flavonoids and their glycosides, which are negative regulators of root growth, likely involved in inhibition of auxin transport and signaling.


Assuntos
Flavonoides , Glicosídeos , Nicotiana , Proteínas de Plantas , Raízes de Plantas , Flavonoides/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Raízes de Plantas/genética , Glicosídeos/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Nicotiana/genética , Nicotiana/crescimento & desenvolvimento , Nicotiana/metabolismo , Regulação da Expressão Gênica de Plantas , Plantas Geneticamente Modificadas , Coenzima A Ligases/metabolismo , Coenzima A Ligases/genética
8.
iScience ; 27(3): 109280, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38444606

RESUMO

Chitinases and ecdysteroid hormones are vital for insect development. Crosstalk between chitin and ecdysteroid metabolism regulation is enigmatic. Here, we examined chitinase inhibition effect on Spodoptera frugiperda ecdysteroid metabolism. In vitro studies suggested that berberine inhibits S. frugiperda chitinase 5 (SfCht5). The Berberine feeding resulted in defective S. frugiperda development. Berberine-fed insects showed higher SfCht5 and Chitinase 7 expression and cumulative chitinase activity. Chitinase inhibition led to overexpression of chitinases, ecdysteroid biosynthesis, and responsive genes. SfCht5 silencing and overexpression resulted in ecdysone receptor deregulation. Transcription factors, like Broad Complex Z4, regulate the ecdysteroid metabolism and showed high expression upon berberine ingestion. Broad Complex Z4 binding in 5' UTR of Ecdysone receptor, SfCht5, Chitinase 7, Phantom, Neverland, and other ecdysteroid biosynthesis genes might lead to their upregulation in berberine-fed insects. As a result, berberine-fed insects showed ecdysone overaccumulation. These findings underscore chitinase activity's impact on ecdysone biosynthesis and its transcriptional crosstalk.

9.
Life Sci ; 341: 122482, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38309577

RESUMO

AIMS: RBM10 is a well-known RNA binding protein that regulates alternative splicing in various disease states. We have shown a splicing-independent function of RBM10 that regulates heart failure. This study aims to unravel a new biological function of RBM10 phosphorylation by proto-oncogene cSrc that enables anti-hypertrophy gene program and controls cardiac hypertrophy. MATERIALS AND METHODS: We employ in vitro and in vivo approaches to characterise RBM10 phosphorylation at three-tyrosine residues (Y81, Y500, and Y971) by cSrc and target mRNA regulation. We also use isoproterenol induced rat heart and cellular hypertrophy model to determine role of cSrc-mediated RBM10 phosphorylation. KEY FINDINGS: We show that RBM10 phosphorylation is induced in cellular and animal heart model of cardiac hypertrophy and regulates target mRNA expression and 3'-end formation. Inhibition of cSrc kinase or mutation of the three-tyrosine phosphorylation sites to phenylalanine accentuates myocyte hypertrophy, and results in advancement and an early attainment of hypertrophy in the heart. RBM10 is down regulated in the hypertrophic myocyte and that its re-expression reverses cellular and molecular changes in the myocyte. However, in the absence of phosphorylation (cSrc inhibition or phospho-deficient mutation), restoration of endogenous RBM10 level in the hypertrophic heart or ectopic re-expression in vitro failed to reverse cardiomyocyte hypertrophy. Mechanistically, loss of RBM10 phosphorylation inhibits nuclear localisation and interaction with Star-PAP compromising anti-hypertrophy gene expression. SIGNIFICANCE: Our study establishes that cSrc-mediated RBM10 phosphorylation arbitrates anti-hypertrophy gene program. We also report a new functional regulation of RBM10 by phosphorylation that is poised to control heart failure.


Assuntos
Cardiomegalia , Insuficiência Cardíaca , Ratos , Animais , Fosforilação , Cardiomegalia/induzido quimicamente , Cardiomegalia/genética , Cardiomegalia/metabolismo , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/metabolismo , Proto-Oncogenes , RNA Mensageiro/genética , Tirosina/metabolismo , Miócitos Cardíacos/metabolismo
10.
Biochim Biophys Acta Mol Basis Dis ; 1870(4): 167080, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38364942

RESUMO

Star-PAP is a non-canonical poly(A) polymerase that is down regulated in breast cancer. While Star-PAP down regulation impairs target mRNA polyadenylation, paradoxically, we see up regulation of a large number of oncogenes on Star-PAP knockdown. Using two breast cancer cells (MCF7 with high Star-PAP, and MDA-MB-231 with negligible Star-PAP level), we discover that Star-PAP negatively regulates oncogene expression and subsequently cellular proliferation. This regulation is compromised with Star-PAP mutant of 3'-end processing function (serine 6 to alanine, S6A phospho-mutation). Concomitantly, xenograft mice model using MDA-MB-231 cells reveals a reduction in the tumour formation on ectopic Star-PAP expression that is ameliorated by S6A mutation. We find that Star-PAP control of target oncogene expression is independent of Star-PAP-mediated alternative polyadenylation or target mRNA 3'-end formation. We demonstrate that Star-PAP regulates target oncogenes through cellular miRNAs (miR-421, miR-335, miR-424, miR-543, miR-205, miR-34a, and miR-26a) that are down regulated in breast cancer. Analysis of various steps in miRNA biogenesis pathway reveals that Star-PAP regulates 3'-end formation and synthesis of primary miRNA (host) transcripts that is dependent on S6 phosphorylation thus controlling mature miRNA generation. Using mimics and inhibitors of two target miRNAs (miR-421 and miR-424) after Star-PAP depletion in MCF7 or ectopic expression in MDA-MB-231 cells, we demonstrate that Star-PAP controls oncogene expression and cellular proliferation through targeting miRNAs that regulates tumour formation. Our study establishes a novel mechanism of oncogene expression independent of alternative polyadenylation through Star-PAP-mediated miRNA host transcript polyadenylation that regulates breast cancer progression.


Assuntos
Neoplasias da Mama , MicroRNAs , Animais , Feminino , Humanos , Camundongos , Neoplasias da Mama/patologia , Proliferação de Células/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Oncogenes , Polinucleotídeo Adenililtransferase/genética , Polinucleotídeo Adenililtransferase/metabolismo , RNA Mensageiro/metabolismo
11.
Adv Biol (Weinh) ; 8(2): e2300404, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37968550

RESUMO

Trehalose is synthesized in insects through the trehalose 6-phosphate synthase and phosphatase (TPS/TPP) pathway. TPP dephosphorylates trehalose 6-phosphate to release trehalose. Trehalose is involved in metamorphosis, but its relation with body weight, size, and developmental timing is unexplored. The expression and activity of TPS/TPP fluctuate depending on trehalose demand. Thus, TPS/TPP inhibition can highlight the significance of trehalose in insect physiology. TPS/TPP transcript levels are elevated in the pre-pupal and pupal stages in Helicoverpa armigera. The inhibition of recombinantly expressed TPP by N-(phenylthio)phthalimide (NPP), is validated by in vitro assays. In vivo inhibition of trehalose synthesis reduces larval weight and size, hampers metamorphosis, and reduces its overall fitness. Insufficient trehalose leads to a shift in glucose flux, reduced energy, and dysregulated fatty acid oxidation. Metabolomics reaffirms the depletion of trehalose, glucose, glucose 6-phosphate, and suppressed tricarboxylic acid cycle. Reduced trehalose hampers the energy level affecting larval vitality. Through trehalose synthesis inhibition, the importance of trehalose in insect physiology and development is investigated. Also, in two other lepidopterans, TPP inhibition impedes physiology and survival. NPP is also found to be effective as an insecticidal formulation. Overall, trehalose levels affect the larval size, weight, and metabolic homeostasis for larval-pupal transition in lepidoptera.


Assuntos
Lepidópteros , Animais , Larva/metabolismo , Lepidópteros/metabolismo , Trealose/farmacologia , Trealose/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo , Glucose/metabolismo , Fosfatos/metabolismo
12.
Protein J ; 42(5): 519-532, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37598128

RESUMO

Amaranthaceae α-amylase inhibitors (AAIs) are knottin-type proteins with selective inhibitory potential against coleopteran α-amylases. Their small size and remarkable stability make them exciting molecules for protein engineering to achieve superior selectivity and efficacy. In this report, we have designed a set of AAI pro- and mature peptides chimeras. Based on in silico analysis, stable AAI chimeras having a stronger affinity with target amylases were selected for characterization. In vitro studies validated that chimera of the propeptide from Chenopodium quinoa α-AI and mature peptide from Beta vulgaris α-AI possess 3, 7.6, and 4.26 fold higher inhibition potential than parental counterparts. Importantly, recombinant AAI chimera retained specificity towards target coleopteran α-amylases. In addition, to improve the inhibitory potential of AAI, we performed in silico site-saturation mutagenesis. Computational analysis followed by experimental data showed that substituting Asparagine at the 6th position with Methionine had a remarkable increase in the specific inhibition potential of Amaranthus hypochondriacus α-AI. These results provide structural-functional insights into the vitality of AAI propeptide and a potential hotspot for mutagenesis to enhance the AAI activity. Our investigation will be a toolkit for AAI's optimization and functional differentiation for future biotechnological applications.


Assuntos
Amaranthaceae , Metionina , Mutagênese , Engenharia de Proteínas , alfa-Amilases
13.
Transl Oncol ; 37: 101761, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37603927

RESUMO

BACKGROUND: Androgen receptor (AR) is considered a marker of better prognosis in hormone receptor positive breast cancers (BC), however, its role in triple negative breast cancer (TNBC) is controversial. This may be attributed to intrinsic molecular differences or scoring methods for AR positivity. We derived AR regulated gene score and examined its utility in BC subtypes. METHODS: AR regulated genes were derived by applying a bioinformatic pipeline on publicly available microarray data sets of AR+ BC cell lines and gene score was calculated as average expression of six AR regulated genes. Tumors were divided into AR high and low based on gene score and associations with clinical parameters, circulating androgens, survival and epithelial to mesenchymal transition (EMT) markers were examined, further evaluated in invitro models and public datasets. RESULTS: 53% (133/249) tumors were classified as AR gene score high and were associated with significantly better clinical parameters, disease-free survival (86.13 vs 72.69 months, log rank p = 0.032) when compared to AR low tumors. 36% of TNBC (N = 66) were AR gene score high with higher expression of EMT markers (p = 0.024) and had high intratumoral levels of 5α-reductase, enzyme involved in intracrine androgen metabolism. In MDA-MB-453 treated with dihydrotestosterone, SLUG expression increased, E-cadherin decreased with increase in migration and these changes were reversed with bicalutamide. Similar results were obtained in public datasets. CONCLUSION: Deciphering the role of AR in BC is difficult based on AR protein levels alone. Our results support the context dependent function of AR in driving better prognosis in ER positive tumors and EMT features in TNBC tumors.

14.
J Vis Exp ; (195)2023 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-37306452

RESUMO

Helicoverpa armigera, a lepidopteran insect, is a polyphagous pest with a worldwide distribution. This herbivorous insect is a threat to plants and agricultural productivity. In response, plants produce several phytochemicals that negatively impact the insect's growth and survival. This protocol demonstrates an obligate feeding assay method to evaluate the effect of a phytochemical (quercetin) on insect growth, development, and survival. Under controlled conditions, the neonates were maintained until the second instar on a pre-defined artificial diet. These second-instar larvae were allowed to feed on a control and quercetin-containing artificial diet for 10 days. The insects' body weight, developmental stage, frass weight, and mortality were recorded on alternate days. The change in body weight, the difference in feeding pattern, and developmental phenotypes were evaluated throughout the assay time. The described obligatory feeding assay simulates a natural mode of ingestion and can be scaled up to a large number of insects. It permits one to analyze phytochemicals' effect on the growth dynamics, developmental transition, and overall fitness of H. armigera. Furthermore, this setup can also be utilized to evaluate alterations in nutritional parameters and digestive physiology processes. This article provides a detailed methodology for feeding assay systems, which may have applications in toxicological studies, insecticidal molecule screening, and understanding chemical effects in plant-insect interactions.


Assuntos
Inseticidas , Mariposas , Animais , Quercetina , Larva , Peso Corporal
15.
Microbiol Res ; 274: 127422, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37301080

RESUMO

Prodigiosin pigment is a secondary metabolite produced by many bacterial species and is known for its medicinal properties. A few of these prodigiosin-producing bacteria are also reported to be entomopathogenic. It is intriguing to unravel the role of prodigiosin in insecticidal activities and its mode of action. In this study, we have shown the production and characterization of prodigiosin from the Serratia rubidaea MJ 24 isolated from the soil of the Western Ghats, India. Further, we assessed the effect of this pigment on the lepidopteran agricultural pest, Helicoverpa armigera. Prodigiosin-fed H. armigera indicated defective development of insect growth upon treatment. Due to defective early development, about 50% mortality and 40% reduction in body weight were observed in insects fed on a 500 ppm prodigiosin-containing diet. The transcriptomic analysis of these insects indicated significant dysregulation of Juvenile hormone synthesis and response related genes. In addition, dopamine related processes and their resultant melanization and sclerotization processes were also found to be affected. The changes in the expression levels of the key transcripts were further validated using real-time quantitative PCR. The metabolome data confirmed the developmental dysregulation of precursors and products of differentially regulated genes due to prodigiosin. Therefore, the corroborated data suggests that prodigiosin majorly affects H. armigera development through dysregulation of the Juvenile hormone-dopamine system and can be considered as a bioactive scaffold to design insect-pest management compounds. This study provides the first report of in-depth analysis of insecticidal system dynamics in H. armigera insects upon prodigiosin feeding via gene expression and metabolic change via omics approach.


Assuntos
Inseticidas , Mariposas , Animais , Prodigiosina/farmacologia , Prodigiosina/metabolismo , Dopamina/metabolismo , Dopamina/farmacologia , Serratia/genética , Mariposas/microbiologia , Inseticidas/metabolismo , Larva/microbiologia
16.
J Vasc Interv Radiol ; 34(8): 1424-1427, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37160251

RESUMO

Medical student exposure to interventional radiology (IR) through dedicated rotations represents a vital component for students to consider IR as a career and to ensure a successful match into the integrated residency pathway. Students from osteopathic medical schools have historically been underrepresented in integrated IR positions. During the 2022 match, 84.1% of successfully matched applicants overall were from U.S. allopathic medical schools, whereas 15.9% were from osteopathic medical schools. This brief report aims to categorize the landscape of IR rotation exposure at osteopathic medical schools and proposes a framework to increase student access to IR.


Assuntos
Internato e Residência , Estudantes de Medicina , Humanos , Estados Unidos , Radiologia Intervencionista/educação , Faculdades de Medicina
17.
Nanomedicine (Lond) ; 18(6): 555-576, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-37199287

RESUMO

Optical imaging modalities have emerged as a keystone in oncological research, capable of providing molecular and cellular information on cancer with the advantage of being minimally invasive toward healthy tissues. Photothermal therapy (PTT) has shown great potential, with the exceptional advantages of high specificity and noninvasiveness. Combining surface-enhanced Raman spectroscopy (SERS)-based optical imaging with PTT has shown tremendous potential in cancer theranostics (therapeutics + diagnosis). This comprehensive review article provides up-to-date information by exploring recent works focused mainly on the development of plasmonic nanoparticles for medical applications using SERS-guided PTT, including the fundamental principles behind SERS and the plasmon heating effect for PTT.


Assuntos
Nanopartículas Metálicas , Nanopartículas , Neoplasias , Humanos , Medicina de Precisão , Terapia Fototérmica , Análise Espectral Raman/métodos , Neoplasias/diagnóstico por imagem , Neoplasias/terapia , Nanopartículas/uso terapêutico , Nanopartículas Metálicas/uso terapêutico , Nanopartículas Metálicas/química , Ouro/química
18.
Front Nutr ; 10: 1134455, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37057063

RESUMO

Purpose: To determine the factors influencing the dietary habits of the varied groups among adults in India. Design/approach: Data on food habits such as choice of diet, preference toward meat, spicy food, sugar/calorie etc., were collected from the participants (from several higher education institutions) of different training programmes and events organised at ICAR-NAARM, Hyderabad and its students of Post Graduate Diploma in Agribusiness Management. Findings: Results of the study indicated that the food choice of the respondents is highly influenced by their region, age and gender. Most of the respondents preferred vegetarian food with increasing age. We also noticed that as age of the respondents increased, their preference toward simple & plain food (with less oil/spice) also increased. From the present investigation, it is recommended that the customized food menu should be prepared in every food serving institution based on the region, age and gender of the consumer. Novelty: Analysis of dietary patterns can be helpful for doctors, dieticians, food policy-making, restaurateurs, youth hostels, food organisations, mega kitchens etc. that would also contribute to responsible food consumption.

19.
J Phys Chem B ; 127(14): 3312-3324, 2023 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-36989467

RESUMO

In contrast to the abundance of work on the anomalous behavior of water, the relationship between the water's thermodynamic anomalies and kinetics of phase transition from metastable water is relatively unexplored. In this work, we have employed classical density functional theory to provide a unified and coherent picture of nucleation (both vapor and ice) from metastable water at negative pressure conditions. Our results suggest a peculiar nonmonotonic temperature dependence of vapor-liquid surface tension at temperatures where vapor-liquid coexistence is metastable with respect to the ice phase. The vapor nucleation barrier on isochoric cooling also shows a nonmonotonic temperature dependence. We further report that, for low density isochores, the temperature of the minimum vapor nucleation barrier (TΔΩv/min*) does not coincide with the temperature of maximum density (TMD) where metastability is maximum. The difference between the TΔΩv/min* and the TMD, however, decreases with increasing the density of the isochore. The vapor nucleation barrier along isobars shows an interesting crossover behavior in the vicinity of the Widom line on lowering the temperature. Our results on the ice nucleation suggest an anomalous retracing behavior of the nucleation barrier along isotherms at negative pressures and theoretically validate the recent findings that the reentrant ice(Ih)-liquid coexistence line can induce a drastic change in the kinetics of ice nucleation. Thus, this study establishes a direct connection between the metastable water's thermodynamic anomalies and the (vapor and ice) nucleation kinetics. In addition, this study provides deeper insights into the origin of the isothermal compressibility maximum on isochoric cooling.

20.
Gene ; 862: 147259, 2023 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-36758844

RESUMO

Trehalose is a primary sugar and its distribution across the insect body, regulated by trehalose transporters (TRETs), is essential for sugar metabolism and energy homeostasis. The large diversity of Tret-like sugar transporters (ST), belonging to SLC2A transporter family, in polyphagous insects probably contributes to their extremely adaptive nature. We aim to study spatio-temporal expression dynamics and functional relevance of ST transcript variants in the lepidopteran model organism, Helicoverpa armigera. Identification of 69 putative Tret-like HaST transcript variants from databases and their digital gene expression analysis indicated tissue and development-specific expression patterns. Phylogenetic and sequence similarity network analysis of HaSTs signify evolutionary divergence, while motif and structure analysis depicted conserved signatures. In vitro gene expression validation for selected genes depicts that HaST09 and 69 are fat body and haemolymph-specific. While, HaST06, 30, 36 and 57 are developmental stage or sex-specific. HaST69 has high expression in the haemolymph of fifth instar larvae. In the presence of trehalose metabolism inhibitors and abiotic stress, HaSTs expression show dysregulation, indicating their possible association with trehalose metabolism and stress recovery. In vivo gene silencing of HaST69 resulted in reduced trehalose accumulation in the insect body, suggesting its plausible role in sugar metabolism. The overall understanding of HaST diversity and expression dynamics highlights their putative roles in sugar transport during adaptation and stress recovery of insects.


Assuntos
Mariposas , Trealose , Animais , Masculino , Feminino , Trealose/metabolismo , Filogenia , Mariposas/genética , Larva/genética , Insetos/genética , Proteínas de Membrana Transportadoras/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA