Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(4)2023 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-36850911

RESUMO

Cellular vehicle-to-everything (C-V2X) is a communication technology that supports various safety, mobility, and environmental applications, given its higher reliability properties compared to other communication technologies. The performance of these C-V2X-enabled intelligent transportation system (ITS) applications is affected by the performance of the C-V2X communication technology (mainly packet loss). Similarly, the performance of the C-V2X communication is dependent on the vehicular traffic density which is affected by the traffic mobility patterns and vehicle routing strategies. Consequently, it is critical to develop a tool that can simulate, analyze, and evaluate the mutual interactions of the transportation and communication systems at the application level to quantify the benefits of C-V2X-enabled ITS applications realistically. In this paper, we demonstrate the benefits gained when using C-V2X Vehicle-to-Infrastructure (V2I) communication technology in an energy-efficient dynamic routing application. Specifically, we develop a Connected Energy-Efficient Dynamic Routing (C-EEDR) application using C-V2X as a communication medium in an integrated vehicular traffic and communication simulator (INTEGRATION). The results demonstrate that the C-EEDR application achieves fuel savings of up to 16.6% and 14.7% in the IDEAL and C-V2X communication cases, respectively, for a peak hour demand on the downtown Los Angeles network considering a 50% level of market penetration of connected vehicles. The results demonstrate that the fuel savings increase with increasing levels of market penetration at lower traffic demand levels (25% and 50% the peak demand). At higher traffic demand levels (75% and 100%), the fuel savings increase with increasing levels of market penetration with maximum benefits at a 50% market penetration rate. Although the communication system is affected by the high density of vehicles at the high traffic demand levels (75% and 100% the peak demand), the C-EEDR application manages to perform reliably, producing system-wide fuel consumption savings.The C-EEDR application achieves fuel savings of 15.2% and 11.7% for the IDEAL communication and 14% and 9% for the C-V2X communication at the 75% and 100% market penetration rates, respectively. Finally, the paper demonstrates that the C-V2X communication constraints only affect the performance of the C-EEDR application at the full demand level when the market penetration of the connected vehicles exceeds 25%. This degradation, however, is minimal (less than a 2.5% reduction in fuel savings).

2.
PLoS One ; 16(8): e0256224, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34388216

RESUMO

The impacts of autonomous vehicles (AV) are widely anticipated to be socially, economically, and ethically significant. A reliable assessment of the harms and benefits of their large-scale deployment requires a multi-disciplinary approach. To that end, we employed Multi-Criteria Decision Analysis to make such an assessment. We obtained opinions from 19 disciplinary experts to assess the significance of 13 potential harms and eight potential benefits that might arise under four deployments schemes. Specifically, we considered: (1) the status quo, i.e., no AVs are deployed; (2) unfettered assimilation, i.e., no regulatory control would be exercised and commercial entities would "push" the development and deployment; (3) regulated introduction, i.e., regulatory control would be applied and either private individuals or commercial fleet operators could own the AVs; and (4) fleets only, i.e., regulatory control would be applied and only commercial fleet operators could own the AVs. Our results suggest that two of these scenarios, (3) and (4), namely regulated privately-owned introduction or fleet ownership or autonomous vehicles would be less likely to cause harm than either the status quo or the unfettered options.


Assuntos
Automação/ética , Veículos Autônomos/ética , Modelos Estatísticos , Propriedade/economia , Acidentes de Trânsito/prevenção & controle , Atitude , Automação/legislação & jurisprudência , Condução de Veículo/psicologia , Veículos Autônomos/legislação & jurisprudência , Técnicas de Apoio para a Decisão , Humanos , Princípios Morais , Inquéritos e Questionários
3.
Sensors (Basel) ; 21(14)2021 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-34300376

RESUMO

Substantial research is required to ensure that micro-mobility ride sharing provides a better fulfilment of user needs. This study proposes a novel crowdsourcing model for the ride-sharing system where light vehicles such as scooters and bikes are crowdsourced. The proposed model is expected to solve the problem of charging and maintaining a large number of light vehicles where these efforts will be the responsibility of the crowd of suppliers. The proposed model consists of three entities: suppliers, customers, and a management party responsible for receiving, renting, booking, and demand matching with offered resources. It can allow suppliers to define the location of their private e-scooters/e-bikes and the period of time they are available for rent. Using a dataset of over 9 million e-scooter trips in Austin, Texas, we ran an agent-based simulation six times using three maximum battery ranges (i.e., 35, 45, and 60 km) and different numbers of e-scooters (e.g., 50 and 100) at each origin. Computational results show that the proposed model is promising and might be advantageous to shift the charging and maintenance efforts to a crowd of suppliers.


Assuntos
Crowdsourcing , Simulação por Computador
4.
Sensors (Basel) ; 21(6)2021 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-33803583

RESUMO

The transportation system has evolved into a complex cyber-physical system with the introduction of wireless communication and the emergence of connected travelers and connected automated vehicles. Such applications create an urgent need to develop high-fidelity transportation modeling tools that capture the mutual interaction of the communication and transportation systems. This paper addresses this need by developing a high-fidelity, large-scale dynamic and integrated traffic and direct cellullar vehicle-to-vehicle and vehicle-to-infrastructure (collectively known as V2X) modeling tool. The unique contributions of this work are (1) we developed a scalable implementation of the analytical communication model that captures packet movement at the millisecond level; (2) we coupled the communication and traffic simulation models in real-time to develop a fully integrated dynamic connected vehicle modeling tool; and (3) we developed scalable approaches that adjust the frequency of model coupling depending on the number of concurrent vehicles in the network. The proposed scalable modeling framework is demonstrated by running on the Los Angeles downtown network considering the morning peak hour traffic demand (145,000 vehicles), running faster than real-time on a regular personal computer (1.5 h to run 1.86 h of simulation time). Spatiotemporal estimates of packet delivery ratios for downtown Los Angeles are presented. This novel modeling framework provides a breakthrough in the development of urgently needed tools for large-scale testing of direct (C-V2X) enabled applications.

5.
Sensors (Basel) ; 21(1)2021 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-33401615

RESUMO

This paper compares the operation of a decentralized Nash bargaining traffic signal controller (DNB) to the operation of state-of-the-art adaptive and gating traffic signal control. Perimeter control (gating), based on the network fundamental diagram (NFD), was applied on the borders of a protected urban network (PN) to prevent and/or disperse traffic congestion. The operation of gating control and local adaptive controllers was compared to the operation of the developed DNB traffic signal controller. The controllers were implemented and their performance assessed on a grid network in the INTEGRATION microscopic simulation software. The results show that the DNB controller, although not designed to solve perimeter control problems, successfully prevents congestion from building inside the PN and improves the performance of the entire network. Specifically, the DNB controller outperforms both gating and non-gating controllers, with reductions in the average travel time ranging between 21% and 41%, total delay ranging between 40% and 55%, and emission levels/fuel consumption ranging between 12% and 20%. The results demonstrate statistically significant benefits of using the developed DNB controller over other state-of-the-art centralized and decentralized gating/adaptive traffic signal controllers.

6.
Sensors (Basel) ; 20(15)2020 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-32707783

RESUMO

The paper presents a nonlinear filtering approach to estimate the traffic stream density on signalized approaches based solely on connected vehicle (CV) data. Specifically, a particle filter (PF) is developed to produce reliable traffic density estimates using CV travel-time measurements. Traffic flow continuity is used to derive the state equation, whereas the measurement equation is derived from the hydrodynamic traffic flow relationship. Subsequently, the PF filtering approach is compared to linear estimation approaches; namely, a Kalman filter (KF) and an adaptive KF (AKF). Simulated data are used to evaluate the performance of the three estimation techniques on a signalized approach experiencing oversaturated conditions. Results demonstrate that the three techniques produce accurate estimates-with the KF, surprisingly, being the most accurate of the three techniques. A sensitivity of the estimation techniques to various factors including the CV level of market penetration, the initial conditions, and the number of particles in the PF is also presented. As expected, the study demonstrates that the accuracy of the PF estimation increases as the number of particles increases. Furthermore, the accuracy of the density estimate increases as the level of CV market penetration increases. The results indicate that the KF is least sensitive to the initial vehicle count estimate, while the PF is most sensitive to the initial condition. In conclusion, the study demonstrates that a simple linear estimation approach is best suited for the proposed application.

7.
Sensors (Basel) ; 20(6)2020 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-32168790

RESUMO

Lane changes are complex safety- and throughput-critical driver actions. Most lane-changing models deal with lane-changing maneuvers solely from the merging driver's standpoint and thus ignore driver interaction. To overcome this shortcoming, we develop a game-theoretical decision-making model and validate the model using empirical merging maneuver data at a freeway on-ramp. Specifically, this paper advances our repeated game model by using updated payoff functions. Validation results using the Next Generation SIMulation (NGSIM) empirical data show that the developed game-theoretical model provides better prediction accuracy compared to previous work, giving correct predictions approximately 86% of the time. In addition, a sensitivity analysis demonstrates the rationality of the model and its sensitivity to variations in various factors. To provide evidence of the benefits of the repeated game approach, which takes into account previous decision-making results, a case study is conducted using an agent-based simulation model. The proposed repeated game model produces superior performance to a one-shot game model when simulating actual freeway merging behaviors. Finally, this lane change model, which captures the collective decision-making between human drivers, can be used to develop automated vehicle driving strategies.

8.
Sensors (Basel) ; 19(19)2019 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-31591292

RESUMO

This paper presents a novel model for estimating the number of vehicles along signalized approaches. The proposed estimation algorithm utilizes the adaptive Kalman filter (AKF) to produce reliable traffic vehicle count estimates, considering real-time estimates of the system noise characteristics. The AKF utilizes only real-time probe vehicle data. The AKF is demonstrated to outperform the traditional Kalman filter, reducing the prediction error by up to 29%. In addition, the paper introduces a novel approach that combines the AKF with a neural network (AKFNN) to enhance the vehicle count estimates, where the neural network is employed to estimate the probe vehicles' market penetration rate. Results indicate that the accuracy of vehicle count estimates is significantly improved using the AKFNN approach (by up to 26%) over the AKF. Moreover, the paper investigates the sensitivity of the proposed AKF model to the initial conditions, such as the initial estimate of vehicle counts, initial mean estimate of the state system, and the initial covariance of the state estimate. The results demonstrate that the AKF is sensitive to the initial conditions. More accurate estimates could be achieved if the initial conditions are appropriately selected. In conclusion, the proposed AKF is more accurate than the traditional Kalman filter. Finally, the AKFNN approach is more accurate than the AKF and the traditional Kalman filter since the AKFNN uses more accurate values of the probe vehicle market penetration rate.

9.
Sensors (Basel) ; 19(10)2019 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-31108915

RESUMO

This paper presents a novel de-centralized flexible phasing scheme, cycle-free, adaptive traffic signal controller using a Nash bargaining game-theoretic framework. The Nash bargaining algorithm optimizes the traffic signal timings at each signalized intersection by modeling each phase as a player in a game, where players cooperate to reach a mutually agreeable outcome. The controller is implemented and tested in the INTEGRATION microscopic traffic assignment and simulation software, comparing its performance to that of a traditional decentralized adaptive cycle length and phase split traffic signal controller and a centralized fully-coordinated adaptive phase split, cycle length, and offset optimization controller. The comparisons are conducted in the town of Blacksburg, Virginia (38 traffic signalized intersections) and in downtown Los Angeles, California (457 signalized intersections). The results for the downtown Blacksburg evaluation show significant network-wide efficiency improvements. Specifically, there is a 23.6 % reduction in travel time, a 37.6 % reduction in queue lengths, and a 10.4 % reduction in CO 2 emissions relative to traditional adaptive traffic signal controllers. In addition, the testing on the downtown Los Angeles network produces a 35.1 % reduction in travel time on the intersection approaches, a 54.7 % reduction in queue lengths, and a 10 % reduction in CO 2 emissions compared to traditional adaptive traffic signal controllers. The results demonstrate significant potential benefits of using the proposed controller over other state-of-the-art centralized and de-centralized adaptive traffic signal controllers on large-scale networks both during uncongested and congested conditions.

10.
Accid Anal Prev ; 83: 90-100, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26225822

RESUMO

The ability to model driver stop/run behavior at signalized intersections considering the roadway surface condition is critical in the design of advanced driver assistance systems. Such systems can reduce intersection crashes and fatalities by predicting driver stop/run behavior. The research presented in this paper uses data collected from two controlled field experiments on the Smart Road at the Virginia Tech Transportation Institute (VTTI) to model driver stop/run behavior at the onset of a yellow indication for different roadway surface conditions. The paper offers two contributions. First, it introduces a new predictor related to driver aggressiveness and demonstrates that this measure enhances the modeling of driver stop/run behavior. Second, it applies well-known artificial intelligence techniques including: adaptive boosting (AdaBoost), random forest, and support vector machine (SVM) algorithms as well as traditional logistic regression techniques on the data in order to develop a model that can be used by traffic signal controllers to predict driver stop/run decisions in a connected vehicle environment. The research demonstrates that by adding the proposed driver aggressiveness predictor to the model, there is a statistically significant increase in the model accuracy. Moreover the false alarm rate is significantly reduced but this reduction is not statistically significant. The study demonstrates that, for the subject data, the SVM machine learning algorithm performs the best in terms of optimum classification accuracy and false positive rates. However, the SVM model produces the best performance in terms of the classification accuracy only.


Assuntos
Condução de Veículo/psicologia , Condução de Veículo/estatística & dados numéricos , Sinais (Psicologia) , Planejamento Ambiental , Adulto , Idoso , Agressão/psicologia , Algoritmos , Inteligência Artificial , Feminino , Humanos , Modelos Logísticos , Masculino , Pessoa de Meia-Idade , Modelos Teóricos , Virginia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...