Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phytochemistry ; 209: 113638, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36914145

RESUMO

Penicillium fungi are represented by various species and can be found worldwide and thrive in a range of environments, such as in the soil, air, and indoors, and in marine environments, as well as food products. Chemical investigation of species of this genus has led to the discovery of compounds from several structural classes with varied bioactivities. As an example, this genus has been a source of bioactive and structurally unusual steroids. The scope of this short review is to cover specialized metabolites of the steroid class and the cytotoxic, antimicrobial, anti-inflammatory as well as phytotoxic activities of these compounds. Other steroids that possess unusual structures, with significant bioactivity yet to determined, will also be discussed to further demonstrate the structural diversity of this compound class from Penicillium fungi, and hopefully inspire the further exploration of such compounds to uncover their activity.


Assuntos
Anti-Infecciosos , Antineoplásicos , Penicillium , Penicillium/química , Fungos/química , Anti-Infecciosos/química , Esteroides/farmacologia , Esteroides/metabolismo , Antineoplásicos/química
2.
Molecules ; 27(5)2022 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-35268742

RESUMO

The U.S. endemic lichen (Niebla homalea)-derived Penicillium aurantiacobrunneum produced a cytotoxic paxisterol derivative named auransterol (2) and epi-citreoviridin (6). Feeding assay using 13C1-labelled sodium acetate not only produced C-13-labelled paxisterol but also confirmed the biosynthetic origin of the compound. The fluorination of bioactive compounds is known to improve pharmacological and pharmacokinetic effects. Our attempt to incorporate the fluorine atom in paxisterol and its derivatives using the fluorinated precursor sodium monofluoroacetate resulted in the isolation of 7-monofluoroacetyl paxisterol (7). The performed culture experiment, as well as the isolation and structure elucidation of the new fluorinated paxisterol, is discussed herein.


Assuntos
Líquens , Halogenação
3.
J Nat Prod ; 84(7): 1863-1869, 2021 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-34191514

RESUMO

Monosaccharides play important roles in living organisms. They are present in essential glycoproteins, nucleic acids, and glycolipids as well as cell walls and bioactive natural product glycosides and polysaccharides. Monosaccharides are optically active, and as a routine, scientists make sure that their absolute configurations are determined when new natural glycosides are isolated. Many determination methods for the absolute configuration of monosaccharides have been reported, and thus far, taking advantage of their optical rotation differences is the most used and efficient method to distinguish enantiomers. This method, however, is not very convenient, because it requires a milligram amount of each pure sample and the availability of a polarimeter. Identification methods dealing with comparison of the retention times of the d- and l-diastereomeric monosaccharide derivatives by GC, TLC Rf values, HPLC, or UPLC have been also reported. Although effective, these methods still require sample preparation and a few milligrams of the test compounds. A new method with simple sample preparation to distinguish enantiomers of monosaccharides by analyzing the 1H NMR spectra of their diastereomeric derivatives has been developed. The monosaccharide components of a commercially available saponin-rich Panax ginseng and monoglycosides have been successfully identified using this procedure.


Assuntos
Monossacarídeos/química , Produtos Biológicos/química , Espectroscopia de Ressonância Magnética , Estrutura Molecular , Panax/química , Estereoisomerismo
4.
Phytochem Lett ; 43: 154-162, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33927787

RESUMO

Phytochemical investigation of the aerial parts of Homalium cochinchinensis led to the isolation of secondary metabolites belonging to the spermidine alkaloid, glycoside, depsidone and phenol classes. Of the eleven secondary metabolites isolated in this study, two spermidine alkaloids, dovyalicins H (1) and I (2), which belong to a rare group among this class, and six glycosides (3-8) are previously undescribed. The structures of all new isolates were determined by interpretation of spectroscopic and spectrometric data. In this report, the structural elucidation of these unprecedented secondary metabolites (1-8) is described.

5.
Trends Org Chem ; 22: 99-114, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35475303

RESUMO

Natural product (NP) secondary metabolites are designed evolutionarily to have biological effects in other organisms for defense and the mediation of ecological interactions. Their structural complexity and diversity complement biological systems, allowing them to display unique bioactivities. Although more than half of all pharmaceuticals stem from NPs, pharmaceutical companies have reduced NP-based drug discovery programs due to various time and cost-consuming pitfalls; the re-isolation of already known, bioactive compounds being one of the most common. Dereplication methods minimize cost and speed up the discovery of new, bioactive leads by quickly identifying known small molecules. Liquid chromatography coupled mass spectrometry (LC-MS) is the most widely utilized dereplication technique because of its sensitivity and the open-source availability of MS libraries. However, single-ionization techniques are not able to detect all metabolites in a biological sample. Even more concerning, bioactive isomers cannot be differentiated by their mass alone. In response to these issues, complementary dereplication tools are needed to assist MS. Total correlation spectroscopy (TOCSY) is an NMR experiment that illustrates the connection between all coupled protons in a spin system. Most molecules contain several spin systems, and together, these networks form a unique fingerprint that can be utilized to quickly differentiate and dereplicate known compounds, even those with identical masses. In addition, these fingerprints can be used to identify possible new compounds in a crude NP-extract that are structurally related to known small molecules. From a sample of the U.S. endemic lichen Niebla homalea, five non-cytotoxic, new triterpenoids and three known triterpenoids were isolated in our laboratory. As our goal is to discover both new and cytotoxic compounds, we developed a one-dimensional TOCSY-based dereplication method to quickly identify these non-bioactive triterpenoids. After prioritizing triterpenoid-free fractions that showed antiproliferative activity in various cancer cell lines, the new compound 11 was isolated from another Niebla species.

6.
PLoS Negl Trop Dis ; 14(2): e0008073, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32101555

RESUMO

The Aedes aegypti mosquito serves as a major vector for viral diseases, such as dengue, chikungunya, and Zika, which are spreading across the globe and threatening public health. In addition to increased vector transmission, the prevalence of insecticide-resistant mosquitoes is also on the rise, thus solidifying the need for new, safe and effective insecticides to control mosquito populations. We recently discovered that cinnamodial, a unique drimane sesquiterpene dialdehyde of the Malagasy medicinal plant Cinnamosma fragrans, exhibited significant larval and adult toxicity to Ae. aegypti and was more efficacious than DEET-the gold standard for insect repellents-at repelling adult female Ae. aegypti from blood feeding. In this study several semi-synthetic analogues of cinnamodial were prepared to probe the structure-activity relationship (SAR) for larvicidal, adulticidal and antifeedant activity against Ae. aegypti. Initial efforts were focused on modification of the dialdehyde functionality to produce more stable active analogues and to understand the importance of the 1,4-dialdehyde and the α,ß-unsaturated carbonyl in the observed bioactivity of cinnamodial against mosquitoes. This study represents the first investigation into the SAR of cinnamodial as an insecticide and antifeedant against the medically important Ae. aegypti mosquito.


Assuntos
Aedes/efeitos dos fármacos , Comportamento Alimentar/efeitos dos fármacos , Inseticidas/farmacologia , Sesquiterpenos Policíclicos/farmacologia , Animais , Feminino , Inseticidas/síntese química , Inseticidas/química , Larva/efeitos dos fármacos , Modelos Moleculares , Estrutura Molecular , Controle de Mosquitos , Sesquiterpenos Policíclicos/síntese química , Sesquiterpenos Policíclicos/química , Conformação Proteica , Canal de Cátion TRPA1/química , Canal de Cátion TRPA1/metabolismo
7.
Molecules ; 24(2)2019 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-30634398

RESUMO

Ent-homocyclopiamine B (1), a new prenylated indole alkaloid bearing an alicyclic nitro group along with 2-methylbutane-1,2,4-triol (2) were isolated from an endophytic fungus Penicillium concentricum of the liverwort Trichocolea tomentella (Trichocoleaceae). The structure of 1 was elucidated through extensive spectroscopic analyses and comparison with data reported for a structurally related nitro-bearing Penicillium metabolite, clopiamine C (3), which contain an indolizidine ring instead of the quinolizine ring in 1. The new compound, ent-homocyclopiamine B, exhibited slight growth inhibition against Gram-positive bacteria. Based on the reported biosynthesis of related compounds and the isolation of the mevalonic acid derived compound 2-methyl-1,2,4-butanetriol (2), we proposed that ent-homocylopiamine B (1) was biosynthesized from lysine and prenyl group-producing mevalonic pathway.


Assuntos
Alcaloides/farmacologia , Antibacterianos/farmacologia , Penicillium/química , Alcaloides/química , Antibacterianos/química , Bactérias Gram-Positivas/efeitos dos fármacos , Hepatófitas/parasitologia , Lisina/química , Estrutura Molecular , Estreptófitas/microbiologia
8.
Nat Prod Bioprospect ; 6(5): 261-265, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27655634

RESUMO

Melicope madagascariensis (Rutaceae) is an endemic plant species of Madagascar that was first classified as a member of the genus Euodia J. R. & G. Forst (Rutaceae) under the scientific name Euodia madagascariensis Baker. Based on morphological characteristics, Thomas Gordon Hartley taxonomically revised E. madagascariensis Baker to be M. madagascariensis (Baker) T.G. Hartley. Chemotaxonomical studies have long been used to help the identification and confirmation of taxonomical classification of plant species and botanicals. Aiming to find more evidences to support the taxonomical revision performed on E. madagascariensis, we carried out phytochemical investigation of two samples of the plant. Fractionation of the ethanol extracts prepared from two stem bark samples of M. madagascariensis (Baker) T.G. Hartley led to the isolation of seven known furoquinoline alkaloids 1-7 and two known methoxyflavones 8 and 9. The presence of furoquinoline alkaloids and methoxyflavones in the title species is in agreement with its taxonomic transfer from Euodia to Melicope. Antiprotozoal evaluation of the isolated compounds showed that 6-methoxy-7-hydroxydictamnine (heliparvifoline, 3) showed weak antimalarial activity (IC50 = 35 µM) against the chloroquine-resistant strain Dd2 of Plasmodium falciparum. Skimmianine (4) displayed moderate cytotoxicity with IC50 value of 1.5 µM against HT-29 colon cancer cell line whereas 3,5-dihydroxy-3',4',7-trimethoxyflavone (9) was weakly active in the same assay (IC50 = 13.9 µM).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...