Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
STAR Protoc ; 5(2): 103122, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38861382

RESUMO

The exchangeable Zn2+ pool in cells is not static but responds to perturbations as well as fluctuates naturally through the cell cycle. Here, we present a protocol to carry out long-term live-cell imaging of cells expressing a cytosolic Zn2+ sensor. We then describe how to track cells using the published pipeline EllipTrack and how to analyze the single-cell traces to determine changes in labile Zn2+ in response to perturbation. For complete details on the use and execution of this protocol, please refer to Rakshit and Holtzen et al.1.


Assuntos
Técnicas Biossensoriais , Ciclo Celular , Transferência Ressonante de Energia de Fluorescência , Zinco , Zinco/metabolismo , Zinco/análise , Técnicas Biossensoriais/métodos , Ciclo Celular/fisiologia , Transferência Ressonante de Energia de Fluorescência/métodos , Humanos , Células HeLa
2.
STAR Protoc ; 5(2): 103130, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38870018

RESUMO

Zinc (Zn2+) plays roles in structure, catalysis, and signaling. The majority of cellular Zn2+ is bound by proteins, but a fraction of total Zn2+ exists in a labile form. Here, we present a protocol for measuring labile cytosolic Zn2+ using an in situ calibration of a genetically encoded Förster resonance energy transfer (FRET) sensor. We describe steps for producing buffered Zn2+ solutions for performing an imaging-based calibration and analyzing the imaging data generated to determine labile Zn2+ concentration in single cells. For complete details on the use and execution of this protocol, please refer to Rakshit and Holtzen et al.1.


Assuntos
Citosol , Transferência Ressonante de Energia de Fluorescência , Zinco , Transferência Ressonante de Energia de Fluorescência/métodos , Zinco/metabolismo , Zinco/análise , Citosol/metabolismo , Citosol/química , Calibragem , Humanos , Técnicas Biossensoriais/métodos
3.
Cell Rep ; 42(6): 112656, 2023 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-37330912

RESUMO

Zinc is an essential micronutrient required for all domains of life. Cells maintain zinc homeostasis using a network of transporters, buffers, and transcription factors. Zinc is required for mammalian cell proliferation, and zinc homeostasis is remodeled during the cell cycle, but whether labile zinc changes in naturally cycling cells has not been established. We use genetically encoded fluorescent reporters, long-term time-lapse imaging, and computational tools to track labile zinc over the cell cycle in response to changes in growth media zinc and knockdown of the zinc-regulatory transcription factor MTF-1. Cells experience a pulse of labile zinc in early G1, whose magnitude varies with zinc in growth media. Knockdown of MTF-1 increases labile zinc and the zinc pulse. Our results suggest that cells need a minimum zinc pulse to proliferate and that if labile zinc levels are too high, cells pause proliferation until labile cellular zinc is lowered.


Assuntos
Proteínas de Membrana Transportadoras , Zinco , Animais , Humanos , Ciclo Celular , Divisão Celular , Homeostase/fisiologia , Zinco/metabolismo , Mamíferos/metabolismo
4.
ACS Chem Biol ; 16(1): 14-19, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33399442

RESUMO

O-GlcNAc modification of the microtubule associated protein tau and α-synuclein can directly inhibit the formation of the associated amyloid fibers associated with major classes of neurodegenerative diseases. However, the mechanism(s) by which this posttranslational modification (PTM) inhibit amyloid aggregation are still murky. One hypothesis is that O-GlcNAc simply acts as a polyhydroxylated steric impediment to the formation of amyloid oligomers and fibers. Here, we begin to test this hypothesis by comparing the effects of O-GlcNAc to other similar monosaccharides-glucose, N-acetyl-galactosamine (GalNAc), or mannose-on α-synuclein amyloid formation. Interestingly, we find that this quite reasonable hypothesis is not entirely correct. More specifically, we used four types of biochemical and biophysical assays to discover that the different sugars display different effects on the inhibition of amyloid formation, despite only small differences between the structures of the monosaccharides. These results further support a more detailed investigation into the mechanism of amyloid inhibition by O-GlcNAc and has potential implications for the evolution of N-acetyl-glucosamine as the monosaccharide of choice for widespread intracellular glycosylation.


Assuntos
Acetilglucosamina/química , Monossacarídeos/química , alfa-Sinucleína/química , Configuração de Carboidratos , Cromatografia Líquida de Alta Pressão/métodos , Cromatografia de Fase Reversa/métodos , Espectrometria de Massas por Ionização por Electrospray
5.
J Org Chem ; 85(3): 1548-1555, 2020 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-31809571

RESUMO

Toxic amyloid aggregates are a feature of many neurodegenerative diseases. A number of biochemical and structural studies have demonstrated that not all amyloids of a given protein are equivalent but rather that an aggregating protein can form different amyloid structures or polymorphisms. Different polymorphisms can also induce different amounts of pathology and toxicity in cells and in mice, suggesting that the structural differences may play important roles in disease. However, the features that cause the formation of polymorphisms in vivo are still being uncovered. Posttranslational modifications on several amyloid forming proteins, including the Parkinson's disease causing protein α-synuclein, may be one such cause. Here, we explore whether ubiquitination can induce structural changes in α-synuclein aggregates in vitro. We used protein chemistry to first synthesize ubiquitinated analogues at three different positions using disulfide linkages. After aggregation, these linkages can be reversed, allowing us to make relative comparisons between the structures using a proteinase K assay. We find that, while ubiquitination at residue 6, 23, or 96 inhibits α-synuclein aggregation, only modification at residue 96 causes an alteration in the aggregate structure, providing further evidence that posttranslational modifications may be an important feature in amyloid polymorphism formation.


Assuntos
Doença de Parkinson , alfa-Sinucleína , Amiloide , Animais , Camundongos , Ubiquitinação , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo
6.
Dalton Trans ; 48(21): 7047-7061, 2019 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-30938390

RESUMO

Recent developments in Mn biology have added new physiological and pathophysiological roles of this essential metal ion to the already existing repertoire of indispensable biological roles of Mn ions. Notably, the discovery of Mn2+ specific transporters, maladies related to mutations in these transporters, and evidence of the role of labile Mn2+ species as anti-oxidants have initiated studies targeted at elucidating Mn ion regulation and pathways implicated in pathological conditions. Closely inter-linked with the quest for understanding metal ion homeostasis are basic questions like "How are metal ions installed in their correct biological addresses where they need to function?" and "Are dynamic changes in metal ion distribution functionally relevant?" These questions become more critical in the context of Mn2+ ions, which have inherently low binding affinities toward most ligands and hence would always face competing metal ions in the biological milieu. In the emerging context of functional roles of the labile Mn2+ ion pool, the development of chemical tools and techniques that can provide information on the location, distribution and dynamic changes in these parameters under physiological and pathophysiological conditions becomes imperative. In this frontier article, we discuss the challenges that had left Mn2+ ions lagging behind in the race for the development of chemical tools and recent approaches that addressed these challenges to develop tools and techniques that can illuminate Mn ions in living systems.


Assuntos
Manganês/metabolismo , Animais , Cátions Bivalentes , Membrana Celular/metabolismo , Corantes Fluorescentes/química , Homeostase , Humanos , Ligantes , Manganês/química , Imagem Óptica/métodos , Ligação Proteica , Transdução de Sinais
7.
Chem Sci ; 9(41): 7916-7930, 2018 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-30450181

RESUMO

Copper ions are essential for biological function yet are severely detrimental when present in excess. At the molecular level, copper ions catalyze the production of hydroxyl radicals that can irreversibly alter essential bio-molecules. Hence, selective copper chelators that can remove excess copper ions and alleviate oxidative stress will help assuage copper-overload diseases. However, most currently available chelators are non-specific leading to multiple undesirable side-effects. The challenge is to build chelators that can bind to copper ions with high affinity but leave the levels of essential metal ions unaltered. Here we report the design and development of redox-state selective Cu ion chelators that have 108 times higher conditional stability constants toward Cu2+ compared to both Cu+ and other biologically relevant metal ions. This unique selectivity allows the specific removal of Cu2+ ions that would be available only under pathophysiological metal overload and oxidative stress conditions and provides access to effective removal of the aberrant redox-cycling Cu ion pool without affecting the essential non-redox cycling Cu+ labile pool. We have shown that the chelators provide distinct protection against copper-induced oxidative stress in vitro and in live cells via selective Cu2+ ion chelation. Notably, the chelators afford significant reduction in Cu-induced oxidative damage in Atp7a-/- Menkes disease model cells that have endogenously high levels of Cu ions. Finally, in vivo testing of our chelators in a live zebrafish larval model demonstrate their protective properties against copper-induced oxidative stress.

8.
Inorg Chem ; 57(9): 5273-5281, 2018 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-29667813

RESUMO

We report the serendipitous discovery of an optical mercury sensor while trying to develop a water-soluble manganese probe. The sensor is based on a pentaaza macrocycle conjugated to a hemicyanine dye. The pentaaza macrocycle earlier designed in our group was used to develop photoinduced electron transfer (PET)-based "turn-on" fluorescent sensors for manganese. (1) In an attempt to increase the water-solubility of the manganese sensors we changed the dye from BODIPY to hemicyanine. The resultant molecule qHCM afforded a distinct reversible change in the absorption features and a concomitant visible color change upon binding to Hg2+ ions, leading to a highly water-soluble mercury sensor with a 10 ppb detection limit. The molecule acts as a reversible "ON-OFF" fluorescent sensor for Hg2+ with a 35 times decrease in the emission intensity in the presence of 1 equiv of Hg2+ ions. We have demonstrated the applicability of the probe for detecting Hg2+ ions in living cells and in live zebrafish larvae using confocal fluorescence microscopy with visible excitation. High selectivity and sensitivity toward Hg2+ detection make qHCM an attractive probe for detecting Hg2+ in contaminated water sources, which is a major environmental toxicity concern. We have scrutinized the altered metal-ion selectivity of the probe using density functional theory (DFT) and time-dependent DFT calculations, which show that a PET-based metal-sensing scheme is not operational in qHCM. 1H NMR studies and DFT calculations indicate that Hg2+ ions coordinate to oxygen-donor atoms from both the chromophore and macrocycle, leading to sensitive mercury detection.

9.
ACS Chem Neurosci ; 9(3): 469-474, 2018 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-29226666

RESUMO

Monoamine neurotransmission is key to neuromodulation, but imaging monoamines in live neurons has remained a challenge. Here we show that externally added ortho-phthalaldehyde (OPA) can permeate live cells and form bright fluorogenic adducts with intracellular monoamines (e.g., serotonin, dopamine, and norepinephrine) and with L-DOPA, which can be imaged sensitively using conventional single-photon excitation in a fluorescence microscope. The peak excitation and emission wavelengths (λex = 401 nm and λem = 490 nm for serotonin; λex = 446 nm and λem = 557 nm for dopamine; and λex = 446 nm and λem = 544 nm for norepinephrine, respectively) are accessible to most modern confocal imaging instruments. The identity of monoamine containing structures (possibly neurotransmitter vesicles) in serotonergic RN46A cells is established by quasi-simultaneous imaging of serotonin using three-photon excitation microscopy. Mass spectrometry of cell extracts and of in vitro solutions helps us identify the chemical nature of the adducts and establishes the reaction mechanisms. Our method has low toxicity, high selectivity, and the ability to directly report the location and concentration of monoamines in live cells.


Assuntos
Dopamina/metabolismo , Neurônios/metabolismo , Neurotransmissores/metabolismo , Serotonina/metabolismo , Humanos , Espectrometria de Massas/métodos , Neuroimagem/métodos , Norepinefrina/metabolismo
10.
ACS Chem Biol ; 11(7): 1834-43, 2016 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-27082310

RESUMO

Phosphoinositides are critical cell-signal mediators present on the plasma membrane. The dynamic change of phosphoinositide concentrations on the membrane including clustering and declustering mediates signal transduction. The importance of phosphoinositides is scored by the fact that they participate in almost all cell-signaling events, and a defect in phosphoinositide metabolism is linked to multiple diseases including cancer, bipolar disorder, and type-2 diabetes. Optical sensors for visualizing phosphoinositide distribution can provide information on phosphoinositide dynamics. This exercise will ultimately afford a handle into understanding and manipulating cell-signaling processes. The major requirement in phosphoinositide sensor development is a selective, cell permeable probe that can quantify phosphoinositides. To address this requirement, we have developed short peptide-based ratiometric fluorescent sensors for imaging phosphoinositides. The sensors afford a selective response toward two crucial signaling phosphoinositides, phosphatidylinositol-4,5-bisphosphate (PI(4,5)P2) and phosphatidylinositol-4-phosphate (PI4P), over other anionic membrane phospholipids and soluble inositol phosphates. Dissociation constant values indicate up to 4 times higher probe affinity toward PI(4,5)P2 when compared to PI4P. Significantly, the sensors are readily cell-permeable and enter cells within 15 min of incubation as indicated by multiphoton excitation confocal microscopy. Furthermore, the sensors light up signaling phosphoinositides present both on the cell membrane and on organelle membranes near the perinuclear space, opening avenues for quantifying and monitoring phosphoinositide signaling.


Assuntos
Permeabilidade da Membrana Celular , Corantes Fluorescentes/metabolismo , Fosfatidilinositóis/metabolismo , Sequência de Aminoácidos , Gelsolina/química , Microscopia Confocal , Simulação de Dinâmica Molecular , Espectrometria de Fluorescência
11.
Chem Commun (Camb) ; 51(13): 2605-8, 2015 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-25572103

RESUMO

We tune the coordination environment of macrocyclic ligands to design two novel fluorescence sensors for Mn(2+). The BODIPY-based Mn(2+) sensor M1 affords an excellent, 52 fold, fluorescence 'turn-on' response despite the paramagnetic nature of Mn(2+). The lipophilic probe is cell-permeable and confocal imaging demonstrates that the sensor distinctly detects Mn(2+) within live cells.


Assuntos
Corantes Fluorescentes/química , Compostos Macrocíclicos/química , Manganês/análise , Sobrevivência Celular , Desenho de Fármacos , Corantes Fluorescentes/análise , Corantes Fluorescentes/síntese química , Células HEK293 , Humanos , Compostos Macrocíclicos/síntese química , Manganês/química , Estrutura Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...