Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Lancet Reg Health Southeast Asia ; 22: 100361, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38482152

RESUMO

Background: There are limited global data on head-to-head comparisons of vaccine platforms assessing both humoral and cellular immune responses, stratified by pre-vaccination serostatus. The COVID-19 vaccination drive for the Indian population in the age group 18-45 years began in April 2021 when seropositivity rates in the general population were rising due to the delta wave of COVID-19 pandemic during April-May 2021. Methods: Between June 30, 2021, and Jan 28, 2022, we enrolled 691 participants in the age group 18-45 years across four clinical sites in India. In this non-randomised and laboratory blinded study, participants received either two doses of Covaxin® (4 weeks apart) or two doses of Covishield™ (12 weeks apart) as per the national vaccination policy. The primary outcome was the seroconversion rate and the geometric mean titre (GMT) of antibodies against the SARS-CoV-2 spike and nucleocapsid proteins post two doses. The secondary outcome was the frequency of cellular immune responses pre- and post-vaccination. Findings: When compared to pre-vaccination baseline, both vaccines elicited statistically significant seroconversion and binding antibody levels in both seronegative and seropositive individuals. In the per-protocol cohort, Covishield™ elicited higher antibody responses than Covaxin® as measured by seroconversion rate (98.3% vs 74.4%, p < 0.0001 in seronegative individuals; 91.7% vs 66.9%, p < 0.0001 in seropositive individuals) as well as by anti-spike antibody levels against the ancestral strain (GMT 1272.1 vs 75.4 binding antibody units/ml [BAU/ml], p < 0.0001 in seronegative individuals; 2089.07 vs 585.7 BAU/ml, p < 0.0001 in seropositive individuals). As participants at all clinical sites were not recruited at the same time, site-specific immunogenicity was impacted by the timing of vaccination relative to the delta and omicron waves. Surrogate neutralising antibody responses against variants-of-concern including delta and omicron was higher in Covishield™ recipients than in Covaxin® recipients; and in seropositive than in seronegative individuals after both vaccination and asymptomatic infection (omicron variant). T cell responses are reported from only one of the four site cohorts where the vaccination schedule preceded the omicron wave. In seronegative individuals, Covishield™ elicited both CD4+ and CD8+ spike-specific cytokine-producing T cells whereas Covaxin® elicited mainly CD4+ spike-specific T cells. Neither vaccine showed significant post-vaccination expansion of spike-specific T cells in seropositive individuals. Interpretation: Covishield™ elicited immune responses of higher magnitude and breadth than Covaxin® in both seronegative individuals and seropositive individuals, across cohorts representing the pre-vaccination immune history of most of the vaccinated Indian population. Funding: Corporate social responsibility (CSR) funding from Hindustan Unilever Limited (HUL) and Unilever India Pvt. Ltd. (UIPL).

2.
Nat Commun ; 15(1): 114, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38167829

RESUMO

Bacillus Calmette-Guèrin - vaccination induces not only protection in infants and young children against severe forms of tuberculosis, but also against non-tuberculosis related all-cause mortality. To delineate different factors influencing mycobacterial growth control, here we first investigate the effects of BCG-vaccination in healthy Dutch adults. About a quarter of individuals already control BCG-growth prior to vaccination, whereas a quarter of the vaccinees acquires the capacity to control BCG upon vaccination. This leaves half of the population incapable to control BCG-growth. Single cell RNA sequencing identifies multiple processes associated with mycobacterial growth control. These data suggest (i) that already controllers employ different mechanisms to control BCG-growth than acquired controllers, and (ii) that half of the individuals fail to develop measurable growth control irrespective of BCG-vaccination. These results shed important new light on the variable immune responses to mycobacteria in humans and may impact on improved vaccination against tuberculosis and other diseases.


Assuntos
Mycobacterium , Tuberculose , Adulto , Lactente , Criança , Humanos , Pré-Escolar , Vacina BCG , Tuberculose/microbiologia , Vacinação/métodos
3.
iScience ; 26(10): 107889, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37817935

RESUMO

This study characterized mechanisms of Bacille Calmette-Guérin (BCG) revaccination-induced trained immunity (TI) in India. Adults, BCG vaccinated at birth, were sampled longitudinally before and after a second BCG dose. BCG revaccination significantly elevated tumor necrosis factor alpha (TNF-α), interleukin (IL)-1ß, and IL-6 in HLA-DR+CD16-CD14hi monocytes, demonstrating induction of TI. Mycobacteria-specific CD4+ T cell interferon (IFN) γ, IL-2, and TNF-α were significantly higher in re-vaccinees and correlated positively with HLA-DR+CD16-CD14hi TI responses. This, however, did not translate into increased mycobacterial growth control, measured by mycobacterial growth inhibition assay (MGIA). Post revaccination, elevated secreted TNF-α, IL-1ß, and IL-6 to "heterologous" fungal, bacterial, and enhanced CXCL-10 and IFNα to viral stimuli were also observed concomitant with increased anti-inflammatory cytokine, IL-1RA. RNA sequencing after revaccination highlighted a BCG and LPS induced signature which included upregulated IL17 and TNF pathway genes and downregulated key inflammatory genes: CXCL11, CCL24, HLADRA, CTSS, CTSC. Our data highlight a balanced immune response comprising pro- and anti-inflammatory mediators to be a feature of BCG revaccination-induced immunity.

4.
NPJ Vaccines ; 8(1): 134, 2023 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-37709772

RESUMO

Detailed characterisation of immune responses induced by COVID-19 vaccines rolled out in India: COVISHIELDTM (CS) and COVAXIN® (CO) in a pre-exposed population is only recently being discovered. We addressed this issue in subjects who received their primary series of vaccination between November 2021 and January 2022. Both vaccines are capable of strongly boosting Wuhan Spike-specific neutralising antibody, polyfunctional Th1 cytokine producing CD4+ T-cells and single IFN-γ + CD8+ T-cells. Consistent with inherent differences in vaccine platform, the vector-based CS vaccine-induced immunity was of greater magnitude, breadth, targeting Delta and Omicron variants compared to the whole-virion inactivated vaccine CO, with CS vaccinees showing persistent CD8+ T-cells responses until 3 months post primary vaccination. This study provides detailed evidence on the magnitude and quality of CS and CO vaccine induced responses in subjects with pre-existing SARS-CoV-2 immunity in India, thereby mitigating vaccine hesitancy arguments in such a population, which remains a global health challenge.

5.
Microbiol Spectr ; : e0023123, 2023 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-36779734

RESUMO

During the coronavirus disease 2019 (COVID-19) pandemic, large differences in susceptibility and mortality due to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection have been reported between populations in Europe and South Asia. While both host and environmental factors (including Mycobacterium bovis BCG vaccination) have been proposed to explain this, the potential biological substrate of these differences is unknown. We purified peripheral blood mononuclear cells from individuals living in India and the Netherlands at baseline and 10 to 12 weeks after BCG vaccination. We compared chromatin accessibility between the two populations at baseline, as well as gene transcription profiles and cytokine production capacities upon stimulation. The chromatin accessibility of genes important for adaptive immunity was higher in the Indians than in the Europeans, while the latter had more accessible chromatin regions in genes of the innate immune system. At the transcriptional level, we observed that the Indian volunteers displayed a more tolerant immune response to stimulation, in contrast to a more exaggerated response in the Europeans. BCG vaccination strengthened the tolerance program in the Indians but not in the Europeans. These differences may partly explain the different impact of COVID-19 on the two populations. IMPORTANCE In this study, we assessed the differences in immune responses in individuals from India and Europe. This aspect is of great relevance, because of the described differences in morbidity and mortality between India and Europe during the pandemic. We found a significant difference in chromatin accessibility in immune cells from the two populations, followed by a more balanced and effective response in individuals from India. These exciting findings represent a very important piece of the puzzle for understanding the COVID-19 pandemic at a global level.

6.
Front Immunol ; 13: 985938, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36268023

RESUMO

This proof-of-concept study tested if prior BCG revaccination can qualitatively and quantitively enhance antibody and T-cell responses induced by Oxford/AstraZeneca ChAdOx1nCoV-19 or COVISHIELD™, an efficacious and the most widely distributed vaccine in India. We compared COVISHIELD™ induced longitudinal immune responses in 21 BCG re-vaccinees (BCG-RV) and 13 BCG-non-revaccinees (BCG-NRV), all of whom were BCG vaccinated at birth; latent tuberculosis negative and SARS-CoV-2 seronegative prior to COVISHIELD™ vaccination. Compared to BCG-NRV, BCG-RV displayed significantly higher and persistent spike-specific neutralizing (n) Ab titers and polyfunctional CD4+ and CD8+ T-cells for eight months post COVISHIELD™ booster, including distinct CD4+IFN-γ+ and CD4+IFN-γ- effector memory (EM) subsets co-expressing IL-2, TNF-α and activation induced markers (AIM) CD154/CD137 as well as CD8+IFN-γ+ EM,TEMRA (T cell EM expressing RA) subset combinations co-expressing TNF-α and AIM CD137/CD69. Additionally, elevated nAb and T-cell responses to the Delta mutant in BCG-RV highlighted greater immune response breadth. Mechanistically, these BCG adjuvant effects were associated with elevated markers of trained immunity, including higher IL-1ß and TNF-α expression in CD14+HLA-DR+monocytes and changes in chromatin accessibility highlighting BCG-induced epigenetic changes. This study provides first in-depth analysis of both antibody and memory T-cell responses induced by COVISHIELD™ in SARS-CoV-2 seronegative young adults in India with strong evidence of a BCG-induced booster effect and therefore a rational basis to validate BCG, a low-cost and globally available vaccine, as an adjuvant to enhance heterologous adaptive immune responses to current and emerging COVID-19 vaccines.


Assuntos
Vacina BCG , Vacinas contra COVID-19 , COVID-19 , Humanos , Adulto Jovem , Adjuvantes Imunológicos , Cromatina , COVID-19/prevenção & controle , Vacinas contra COVID-19/imunologia , Imunidade , Interleucina-2 , SARS-CoV-2 , Fator de Necrose Tumoral alfa , Vacinação
7.
Res Sq ; 2022 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-35262071

RESUMO

This study tested if prior BCG revaccination can further boost immune responses subsequently induced by a widely distributed and otherwise efficacious Oxford/AstraZeneca ChAdOx1nCoV-19 vaccine, referred to as COVISHIELD™, in India. We compared COVISHIELD™ induced longitudinal immune responses in 21 BCG re-vaccinees (BCG-RV) and 13 BCG-non-revaccinees (BCG-NRV), all of whom were BCG vaccinated at birth and latent tuberculosis negative, after COVISHIELD™ prime and boost with baseline samples that were collected pre-pandemic and pre-BCG revaccination. Compared to BCG-NRV, BCG-RV displayed significantly higher magnitude of spike-specific Ab and T cell responses, including a greater proportion of high responders; better quality polyfunctional CD4 and CD8 T cells that persisted and a more robust Ab and T cell response to the Delta mutant of SARS-CoV-2 highlighting greater breadth. Mechanistically, BCG adjuvant effects on COVISHIELD™ induced adaptive responses was associated with more robust innate responses to pathogen-associated-molecular-patterns through TNF-α and IL-1ß secretion. This study provides first in-depth analysis of immune responses induced by COVISHIELD™ in India and highlights the potential of using a cheap and globally available vaccine, BCG, as an adjuvant to enhance heterologous adaptive immune responses induced by COVIDSHIELD™ and other emerging vaccines.

8.
Elife ; 102021 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-34792020

RESUMO

A fundamental challenge in human immunodeficiency virus (HIV) eradication is to understand how the virus establishes latency, maintains stable cellular reservoirs, and promotes rebound upon interruption of antiretroviral therapy (ART). Here, we discovered an unexpected role of the ubiquitous gasotransmitter hydrogen sulfide (H2S) in HIV latency and reactivation. We show that reactivation of HIV is associated with downregulation of the key H2S producing enzyme cystathionine-γ-lyase (CTH) and reduction in endogenous H2S. Genetic silencing of CTH disrupts redox homeostasis, impairs mitochondrial function, and remodels the transcriptome of latent cells to trigger HIV reactivation. Chemical complementation of CTH activity using a slow-releasing H2S donor, GYY4137, suppressed HIV reactivation and diminished virus replication. Mechanistically, GYY4137 blocked HIV reactivation by inducing the Keap1-Nrf2 pathway, inhibiting NF-κB, and recruiting the epigenetic silencer, YY1, to the HIV promoter. In latently infected CD4+ T cells from ART-suppressed human subjects, GYY4137 in combination with ART prevented viral rebound and improved mitochondrial bioenergetics. Moreover, prolonged exposure to GYY4137 exhibited no adverse influence on proviral content or CD4+ T cell subsets, indicating that diminished viral rebound is due to a loss of transcription rather than a selective loss of infected cells. In summary, this work provides mechanistic insight into H2S-mediated suppression of viral rebound and suggests exploration of H2S donors to maintain HIV in a latent form.


Assuntos
Metabolismo Energético , HIV/efeitos dos fármacos , Homeostase , Mitocôndrias/fisiologia , Latência Viral/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos , HIV/fisiologia , Sulfeto de Hidrogênio , Morfolinas/farmacologia , Compostos Organotiofosforados/farmacologia , Oxirredução
9.
Immunol Rev ; 301(1): 98-121, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33955564

RESUMO

BCG turns 100 this year and while it might not be the perfect vaccine, it has certainly contributed significantly towards eradication and prevention of spread of tuberculosis (TB). The search for newer and better vaccines for TB is an ongoing endeavor and latest results from trials of candidate TB vaccines such as M72AS01 look promising. However, recent encouraging data from BCG revaccination trials in adults combined with studies on mucosal and intravenous routes of BCG vaccination in non-human primate models have renewed interest in BCG for TB prevention. In addition, several well-demonstrated non-specific effects of BCG, for example, prevention of viral and respiratory infections, give BCG an added advantage. Also, BCG vaccination is currently being widely tested in human clinical trials to determine whether it protects against SARS-CoV-2 infection and/or death with detailed analyses and outcomes from several ongoing trials across the world awaited. Through this review, we attempt to bring together information on various aspects of the BCG-induced immune response, its efficacy in TB control, comparison with other candidate TB vaccines and strategies to improve its efficiency including revaccination and alternate routes of administration. Finally, we discuss the future relevance of BCG use especially in light of its several heterologous benefits.


Assuntos
Vacina BCG/imunologia , Mycobacterium tuberculosis/imunologia , Tuberculose/imunologia , Tuberculose/prevenção & controle , Vacinação , Imunidade Adaptativa , Vacina BCG/administração & dosagem , Humanos , Imunidade Heteróloga , Imunidade Inata , Imunogenicidade da Vacina , Memória Imunológica
10.
Cell Rep ; 33(9): 108451, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33264614

RESUMO

HIV infection predisposes latent tuberculosis-infected (LTBI) subjects to active TB. This study is designed to determine whether HIV infection of LTBI subjects compromises the balanced Mycobacterium tuberculosis (Mtb)-specific T helper 17 (Th17) response of recognized importance in anti-TB immunity. Comparative analysis of Mtb- and cytomegalovirus (CMV)-specific CD4+ T cell responses demonstrates a marked dampening of the Mtb-specific CD4+ T cell effectors and polyfunctional cells while preserving CMV-specific response. Additionally, HIV skews the Mtb-specific Th17 response in chronic HIV-infected LTBI progressors, but not long-term non-progressors (LTNPs), with preservation of pro-inflammatory interferon (IFN)-γ+/interleukin-17+ (IL-17+) and significant loss of anti-inflammatory IL-10+/IL-17+ effectors that is restored by anti-retroviral therapy (ART). HIV-driven impairment of Mtb-specific response cannot be attributed to preferential infection as cell-associated HIV DNA and HIV RNA reveal equivalent viral burden in CD4+ T cells from different antigen specificities. We therefore propose that beyond HIV-induced loss of Mtb-specific CD4+ T cells, the associated dysregulation of Mtb-specific T cell homeostasis can potentially enhance the onset of TB in LTBI subjects.


Assuntos
Infecções por HIV/genética , Interleucina-17/metabolismo , Tuberculose Latente/complicações , Carga Viral/métodos , Adulto , Feminino , Humanos , Masculino , Adulto Jovem
11.
Oral Dis ; 26 Suppl 1: 69-79, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32862519

RESUMO

A crucial aspect of mucosal HIV transmission is the interaction between HIV, the local environmental milieu and immune cells. The oral mucosa comprises many host cell types including epithelial cells, CD4 + T cells, dendritic cells and monocytes/macrophages, as well as a diverse microbiome predominantly comprising bacterial species. While the oral epithelium is one of the first sites exposed to HIV through oral-genital contact and nursing infants, it is largely thought to be resistant to HIV transmission via mechanisms that are still unclear. HIV-1 infection is also associated with predisposition to secondary infections, such as tuberculosis, and other diseases including cancer. This review addresses the following questions that were discussed at the 8th World Workshop on Oral Health and Disease in AIDS held in Bali, Indonesia, 13 September -15 September 2019: (a) How does HIV infection affect epithelial cell signalling? (b) How does HIV infection affect the production of cytokines and other innate antimicrobial factors, (c) How is the mucosal distribution and function of immune cells altered in HIV infection? (d) How do T cells affect HIV (oral) pathogenesis and cancer? (e) How does HIV infection lead to susceptibility to TB infections?


Assuntos
Infecções por HIV , Imunidade Inata , Mucosa Bucal , Linfócitos T CD4-Positivos , Infecções por HIV/imunologia , Humanos , Imunidade nas Mucosas , Lactente , Mucosa Bucal/imunologia , Mucosa Bucal/virologia
12.
JCI Insight ; 4(24)2019 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-31743110

RESUMO

BACKGROUNDBacille Calmette-Guérin (BCG) vaccine is protective against Tuberculosis (TB) in children, but its efficacy wanes with age. Consequently, determining if BCG revaccination augments anti-TB immunity in young adults in TB endemic regions is vital.METHODSTwo hundred healthy adults, BCG vaccinated at birth, were tested for their IFN-γ release assay (IGRA) status. Of these, 28 IGRA+ and 30 IGRA- were BCG revaccinated, and 24 IGRA+ and 23 IGRA- subjects served as unvaccinated controls. T and innate cell responses to mycobacterial antigens were analyzed by 14-color flow cytometry over 34 weeks.RESULTSIFN-γ and/or IL-2 Ag85A- and BCG-specific CD4+ and CD8+ T cell responses were boosted by revacciantion at 4 and 34 weeks, respectively, and were > 2-fold higher in IGRA+ compared with IGRA- vaccinees. Polyfunctional Ag85A, BCG, and mycobacterium tuberculosis (Mtb) latency Ag-specific (LTAg-specific) CD4+ T cells expressing up to 8 cytokines were also significantly enhanced in both IGRA+ and IGRA- vaccinees relative to unvaccinated controls, most markedly in IGRA+ vaccinees. A focused analysis of Th17 responses revealed expansion of Ag85A-, BCG-, and LTAg-specific total IL-17A+,IL-17F+,IL-22+, and IL-10+ CD4+ T cell effectors in both IGRA+ and IGRA- subjects. Also, innate IFN-γ+ NK/γδ/NKT cell responses were higher in both IGRA+ and IGRA- vaccinees compared with controls. This is the first evidence to our knowledge that BCG revaccination significantly boosts antimycobacterial Th1/Th17 responses in IGRA+ and IGRA- subjects.CONCLUSIONThese data show that BCG revaccination is immunogenic in IGRA- and IGRA+ subjects, implying that Mtb preinfection in IGRA+ subjects does not impact immunogenicity. This has implications for public health and vaccine development strategies.FUNDINGThis work was funded principally by DBT-NIH (BT/MB/Indo-US/HIPC/2013).


Assuntos
Vacina BCG/imunologia , Doenças Endêmicas/prevenção & controle , Imunização Secundária , Imunogenicidade da Vacina , Tuberculose/prevenção & controle , Adolescente , Adulto , Antígenos de Bactérias/administração & dosagem , Antígenos de Bactérias/imunologia , Vacina BCG/administração & dosagem , Feminino , Voluntários Saudáveis , Humanos , Imunidade Inata , Índia , Testes de Liberação de Interferon-gama/estatística & dados numéricos , Mycobacterium tuberculosis/imunologia , Estudos Prospectivos , Células Th1/imunologia , Células Th17/imunologia , Resultado do Tratamento , Tuberculose/imunologia , Tuberculose/microbiologia , Adulto Jovem
13.
Front Immunol ; 10: 195, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30814998

RESUMO

Vaccines that confer protection through induction of adaptive T-cell immunity rely on understanding T-cell epitope (TCE) evolution induced by immune escape. This is poorly understood in tuberculosis (TB), an ancient, chronic disease, where CD4 T-cell immunity is of recognized importance. We probed 905 functionally validated, curated human CD4 T cell epitopes in 79 Mycobacterium tuberculosis (Mtb) whole genomes from India. This screen resulted in identifying 64 mutated epitopes in these strains initially using a computational pipeline and subsequently verified by single nucleotide polymorphism (SNP) analysis. SNP based phylogeny revealed the 79 Mtb strains to cluster to East African Indian (EAI), Central Asian Strain (CAS), and Beijing (BEI) lineages. Eighty-nine percent of the mutated T-cell epitopes (mTCEs) identified in the 79 Mtb strains from India has not previously been reported. These mTCEs were encoded by genes with high nucleotide diversity scores including seven mTCEs encoded by six antigens in the top 10% of rapidly divergent Mtb genes encoded by these strains. Using a T cell functional assay readout, we demonstrate 62% of mTCEs tested to significantly alter CD4 T-cell IFNγ and/or IL2 secretion with associated changes in predicted HLA-DR binding affinity: the gain of function mutations displayed higher predicted HLA-DR binding affinity and conversely mutations resulting in loss of function displayed lower predicted HLA-DR binding affinity. Most mutated antigens belonged to the cell wall/cell processes, and, intermediary metabolism and respiration families though all known Mtb proteins encoded mutations. Analysis of the mTCEs in an SNP database of 5,310 global Mtb strains identified 82% mTCEs to be significantly more prevalent in Mtb strains isolated from India, including 36 mTCEs identified exclusively in strains from India. These epitopes had a significantly higher predicted binding affinity to HLA-DR alleles that were highly prevalent in India compared to HLA-DR alleles rare in India, highlighting HLA-DR maybe an important driver of these mutations. This first evidence of region-specific TCE mutations potentially employed by Mtb to escape host immunity has important implications for TB vaccine design.


Assuntos
Variação Antigênica/imunologia , Antígenos de Bactérias/imunologia , Epitopos de Linfócito T/imunologia , Interações Hospedeiro-Patógeno/imunologia , Mycobacterium tuberculosis/imunologia , Tuberculose/imunologia , Alelos , Variação Antigênica/genética , Antígenos de Bactérias/genética , Evolução Biológica , Epitopos de Linfócito T/genética , Genoma Bacteriano , Genômica/métodos , Antígenos de Histocompatibilidade Classe II/imunologia , Humanos , Imunidade Celular , Índia/epidemiologia , Interferon gama/metabolismo , Mutação , Mycobacterium tuberculosis/classificação , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/isolamento & purificação , Filogenia , Polimorfismo de Nucleotídeo Único , Vigilância em Saúde Pública , Tuberculose/epidemiologia , Tuberculose/microbiologia
14.
Sci Rep ; 7(1): 11948, 2017 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-28931830

RESUMO

The functional heterogeneity of T cell responses to diverse antigens expressed at different stages of Mycobacterium tuberculosis (Mtb) infection, in particular early secreted versus dormancy related latency antigens expressed later, that distinguish subjects with latent (LTBI), pulmonary (PTB) or extrapulmonary (EPTB) tuberculosis remains unclear. Here we show blood central memory CD4 T-cell responses specific to Mtb dormancy related (DosR) latency, but not classical immunodominant secretory antigens, to clearly differentiate LTBI from EPTB and PTB. The polyfunctionality score integrating up to 31 DosR-specific CD4 T-cell functional profiles was significantly higher in LTBI than EPTB or PTB subjects. Further analysis of 256 DosR-specific T-cell functional profiles identified regulatory IL10 + Th17 cells (IL10+IL17A+IL17F+IL22+) to be significantly enriched in LTBI; in contrast to pro-inflammatory Th17 cells (IFNγ+IL17A+/IL10-) in the blood and lung of EPTB and PTB subjects respectively. A blood polyfunctional, Mtb DosR latency antigen specific, regulatory, central memory response is therefore a novel functional component of T-cell immunity in latent TB and potential correlate of protection.


Assuntos
Proteínas de Bactérias/imunologia , Interleucina-10/análise , Mycobacterium tuberculosis/imunologia , Proteínas Quinases/imunologia , Subpopulações de Linfócitos T/imunologia , Células Th17/imunologia , Tuberculose/diagnóstico , Tuberculose/patologia , Adolescente , Adulto , Idoso , Antígenos CD4/análise , Proteínas de Ligação a DNA , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Subpopulações de Linfócitos T/química , Células Th17/química , Adulto Jovem
15.
Biochim Biophys Acta ; 1843(11): 2645-61, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24983769

RESUMO

Interferon-gamma (Ifnγ), a known immunomodulatory cytokine, regulates cell proliferation and survival. In this study, the mechanisms leading to the selective susceptibility of some tumor cells to Ifnγ were deciphered. Seven different mouse tumor cell lines tested demonstrated upregulation of MHC class I to variable extents with Ifnγ; however, only the cell lines, H6 hepatoma and L929 fibrosarcoma, that produce higher amounts of nitric oxide (NO) and reactive oxygen species (ROS) are sensitive to Ifnγ-induced cell death. NO inhibitors greatly reduce Ifnγ-induced ROS; however, ROS inhibitors did not affect the levels of Ifnγ-induced NO, demonstrating that NO regulates ROS. Consequently, NO inhibitors are more effective, compared to ROS inhibitors, in reducing Ifnγ-induced cell death. Further analysis revealed that Ifnγ induces peroxynitrite and 3-nitrotyrosine amounts and a peroxynitrite scavenger, FeTPPS, reduces cell death. Ifnγ treatment induces the phosphorylation of c-jun N-terminal kinase (Jnk) in H6 and L929 but not CT26, a colon carcinoma cell line, which is resistant to Ifnγ-mediated death. Jnk activation downstream to NO leads to induction of ROS, peroxynitrite and cell death in response to Ifnγ. Importantly, three cell lines tested, i.e. CT26, EL4 and Neuro2a, that are resistant to cell death with Ifnγ alone become sensitive to the combination of Ifnγ and NO donor or ROS inducer in a peroxynitrite-dependent manner. Overall, this study delineates the key roles of NO as the initiator and Jnk, ROS, and peroxynitrite as the effectors during Ifnγ-mediated cell death. The implications of these findings in the Ifnγ-mediated treatment of malignancies are discussed.

16.
PLoS One ; 7(9): e45521, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23029070

RESUMO

Acetaminophen is a widely prescribed drug used to relieve pain and fever; however, it is a leading cause of drug-induced liver injury and a burden on public healthcare. In this study, hepatotoxicity in mice post oral dosing of acetaminophen was investigated using liver and sera samples with Fourier Transform Infrared microspectroscopy. The infrared spectra of acetaminophen treated livers in BALB/c mice show decrease in glycogen, increase in amounts of cholesteryl esters and DNA respectively. Rescue experiments using L-methionine demonstrate that depletion in glycogen and increase in DNA are abrogated with pre-treatment, but not post-treatment, with L-methionine. This indicates that changes in glycogen and DNA are more sensitive to the rapid depletion of glutathione. Importantly, analysis of sera identified lowering of glycogen and increase in DNA and chlolesteryl esters earlier than increase in alanine aminotransferase, which is routinely used to diagnose liver damage. In addition, these changes are also observed in C57BL/6 and Nos2(-/-) mice. There is no difference in the kinetics of expression of these three molecules in both strains of mice, the extent of damage is similar and corroborated with ALT and histological analysis. Quantification of cytokines in sera showed increase upon APAP treatment. Although the levels of Tnfα and Ifnγ in sera are not significantly affected, Nos2(-/-) mice display lower Il6 but higher Il10 levels during this acute model of hepatotoxicity. Overall, this study reinforces the growing potential of Fourier Transform Infrared microspectroscopy as a fast, highly sensitive and label-free technique for non-invasive diagnosis of liver damage. The combination of Fourier Transform Infrared microspectroscopy and cytokine analysis is a powerful tool to identify multiple biomarkers, understand differential host responses and evaluate therapeutic regimens during liver damage and, possibly, other diseases.


Assuntos
Acetaminofen/efeitos adversos , Biomarcadores/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/patologia , Espectroscopia de Infravermelho com Transformada de Fourier , Acetaminofen/administração & dosagem , Animais , Biomarcadores/sangue , Doença Hepática Induzida por Substâncias e Drogas/sangue , Ésteres do Colesterol/sangue , Ésteres do Colesterol/metabolismo , Citocinas/sangue , Citocinas/metabolismo , DNA/sangue , DNA/metabolismo , Glicogênio/sangue , Glicogênio/metabolismo , Cinética , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Metionina/efeitos adversos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/metabolismo
17.
Cancer Sci ; 103(1): 88-99, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21943109

RESUMO

Alcoholic extract of Piper betle (Piper betle L.) leaves was recently found to induce apoptosis of CML cells expressing wild type and mutated Bcr-Abl with imatinib resistance phenotype. Hydroxy-chavicol (HCH), a constituent of the alcoholic extract of Piper betle leaves, was evaluated for anti-CML activity. Here, we report that HCH and its analogues induce killing of primary cells in CML patients and leukemic cell lines expressing wild type and mutated Bcr-Abl, including the T315I mutation, with minimal toxicity to normal human peripheral blood mononuclear cells. HCH causes early but transient increase of mitochondria-derived reactive oxygen species. Reactive oxygen species-dependent persistent activation of JNK leads to an increase in endothelial nitric oxide synthase-mediated nitric oxide generation. This causes loss of mitochondrial membrane potential, release of cytochrome c from mitochondria, cleavage of caspase 9, 3 and poly-adenosine diphosphate-ribose polymerase leading to apoptosis. One HCH analogue was also effective in vivo in SCID mice against grafts expressing the T315I mutation, although to a lesser extent than grafts expressing wild type Bcr-Abl, without showing significant bodyweight loss. Our data describe the role of JNK-dependent endothelial nitric oxide synthase-mediated nitric oxide for anti-CML activity of HCH and this molecule merits further testing in pre-clinical and clinical settings.


Assuntos
Apoptose/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Eugenol/análogos & derivados , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , MAP Quinase Quinase 4/metabolismo , Mitocôndrias/efeitos dos fármacos , Óxido Nítrico Sintase Tipo III/metabolismo , Piper betle/química , Espécies Reativas de Oxigênio/metabolismo , Animais , Antineoplásicos/farmacologia , Benzamidas , Western Blotting , Eugenol/química , Eugenol/farmacologia , Citometria de Fluxo , Proteínas de Fusão bcr-abl/genética , Humanos , Mesilato de Imatinib , Leucemia Mielogênica Crônica BCR-ABL Positiva/metabolismo , Leucemia Mielogênica Crônica BCR-ABL Positiva/patologia , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/metabolismo , Masculino , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos , Camundongos Nus , Camundongos SCID , Mitocôndrias/metabolismo , Óxido Nítrico/metabolismo , Fosforilação/efeitos dos fármacos , Piperazinas/farmacologia , Extratos Vegetais/farmacologia , Folhas de Planta/química , Pirimidinas/farmacologia , Células Tumorais Cultivadas
18.
Int J Cancer ; 130(4): 865-75, 2012 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-21455983

RESUMO

Mycobacterium indicus pranii (MIP) is approved for use as an adjuvant (Immuvac/Cadi-05) in the treatment of leprosy. In addition, its efficacy is being investigated in clinical trials on patients with tuberculosis and different tumors. To evaluate and delineate the mechanisms by which autoclaved MIP enhances anti-tumor responses, the growth of solid tumors consisting of Sp2/0 (myeloma) and EL4 (thymoma) cells was studied in BALB/c and C57BL/6 mice, respectively. Treatment of mice with a single intra-dermal (i.d.) injection of MIP 3 days after Sp2/0 implantation greatly suppresses tumor growth. MIP treatment of tumor bearing mice lowers Interleukin (IL)6 but increases IL12p70 and IFNγ amounts in sera. Also, increase in CD8(+) T cell mediated lysis of specific tumor targets and production of high amounts of IL2 and IFNγ by CD4(+) T cells upon stimulation with specific tumor antigens in MIP treated mice is observed. Furthermore, MIP is also effective in reducing the growth of EL4 tumors; however, this efficacy is reduced in Ifnγ(-/-) mice. In fact, several MIP mediated anti-tumor responses are greatly abrogated in Ifnγ(-/-) mice: increase in serum Interleukin (IL)12p70 amounts, induction of IL2 and lysis of EL4 targets by splenocytes upon stimulation with specific tumor antigens. Interestingly, tumor-induced increase in serum IL12p70 and IFNγ and reduction in growth of Sp2/0 and EL4 tumors by MIP are not observed in nonobese diabetic severe combined immunodeficiency mice. Overall, our study clearly demonstrates the importance of a functional immune network, in particular endogenous CD4(+) and CD8(+) T cells and IFNγ, in mediating the anti-tumor responses by MIP.


Assuntos
Adjuvantes Imunológicos/farmacologia , Citotoxicidade Imunológica , Interferon gama/fisiologia , Mycobacterium/imunologia , Neoplasias Experimentais/terapia , Linfócitos T/imunologia , Adjuvantes Imunológicos/uso terapêutico , Animais , Linfócitos T CD8-Positivos/imunologia , Linhagem Celular Tumoral , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Células Th1/imunologia
19.
PLoS Pathog ; 7(11): e1002384, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22114559

RESUMO

Candida albicans, a human fungal pathogen, undergoes morphogenetic changes that are associated with virulence. We report here that GAL102 in C. albicans encodes a homolog of dTDP-glucose 4,6-dehydratase, an enzyme that affects cell wall properties as well as virulence of many pathogenic bacteria. We found that GAL102 deletion leads to greater sensitivity to antifungal drugs and cell wall destabilizing agents like Calcofluor white and Congo red. The mutant also formed biofilms consisting mainly of hyphal cells that show less turgor. The NMR analysis of cell wall mannans of gal102 deletion strain revealed that a major constituent of mannan is missing and the phosphomannan component known to affect virulence is greatly reduced. We also observed that there was a substantial reduction in the expression of genes involved in biofilm formation but increase in the expression of genes encoding glycosylphosphatidylinositol-anchored proteins in the mutant. These, along with altered mannosylation of cell wall proteins together might be responsible for multiple phenotypes displayed by the mutant. Finally, the mutant was unable to grow in the presence of resident peritoneal macrophages and elicited a weak pro-inflammatory cytokine response in vitro. Similarly, this mutant elicited a poor serum pro-inflammatory cytokine response as judged by IFNγ and TNFα levels and showed reduced virulence in a mouse model of systemic candidiasis. Importantly, an Ala substitution for a conserved Lys residue in the active site motif YXXXK, that abrogates the enzyme activity also showed reduced virulence and increased filamentation similar to the gal102 deletion strain. Since inactivating the enzyme encoded by GAL102 makes the cells sensitive to antifungal drugs and reduces its virulence, it can serve as a potential drug target in combination therapies for C. albicans and related pathogens.


Assuntos
Proteínas de Bactérias/metabolismo , Candida albicans/patogenicidade , Parede Celular/metabolismo , Hidroliases/metabolismo , Sequência de Aminoácidos , Animais , Antifúngicos/farmacologia , Proteínas de Bactérias/genética , Biofilmes , Candida albicans/genética , Candida albicans/crescimento & desenvolvimento , Candidíase/patologia , Sequência de Carboidratos , Proteínas Fúngicas , Hidroliases/genética , Interferon gama/biossíntese , Interleucina-4/biossíntese , Macrófagos Peritoneais/fisiologia , Mananas/análise , Mananas/metabolismo , Camundongos , Dados de Sequência Molecular , Mutação , Alinhamento de Sequência , Fator de Necrose Tumoral alfa/biossíntese , UDPglucose 4-Epimerase/genética , Virulência
20.
Biochem Pharmacol ; 80(11): 1662-75, 2010 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-20832390

RESUMO

Chlorogenic acid (Chl) has been reported to possess a wide range of biological and pharmacological properties including induction of apoptosis of Bcr-Abl(+) chronic myeloid leukemia (CML) cell lines and clinical leukemia samples via inhibition of Bcr-Abl phosphorylation. Here we studied the mechanisms of action of Chl in greater detail. Chl treatment induced an early accumulation of intracellular reactive oxygen species (ROS) in Bcr-Abl(+) cells leading to downregulation of Bcr-Abl phosphorylation and apoptosis. Chl treatment upregulated death receptor DR5 and induced loss of mitochondrial membrane potential accompanied by release of cytochrome c from the mitochondria to the cytosol. Pharmacological inhibition of caspase-8 partially inhibited apoptosis, whereas caspase-9 and pan-caspase inhibitor almost completely blocked the killing. Knocking down DR5 using siRNA completely attenuated Chl-induced caspase-8 cleavage but partially inhibited apoptosis. Antioxidant NAC attenuated Chl-induced oxidative stress-mediated inhibition of Bcr-Abl phosphorylation, DR5 upregulation, caspase activation and CML cell death. Our data suggested the involvement of parallel death pathways that converged in mitochondria. The role of ROS in Chl-induced death was confirmed with primary leukemia cells from CML patients in vitro as well as in vivo in nude mice bearing K562 xenografts. Collectively, our results establish the role of ROS for Chl-mediated preferential killing of Bcr-Abl(+) cells.


Assuntos
Apoptose/fisiologia , Ácido Clorogênico/farmacologia , Proteínas de Fusão bcr-abl/biossíntese , Leucemia Mielogênica Crônica BCR-ABL Positiva/metabolismo , Leucemia Mielogênica Crônica BCR-ABL Positiva/patologia , Espécies Reativas de Oxigênio/metabolismo , Animais , Apoptose/efeitos dos fármacos , Ácido Clorogênico/isolamento & purificação , Proteínas de Fusão bcr-abl/fisiologia , Técnicas de Silenciamento de Genes/métodos , Humanos , Células K562 , Camundongos , Camundongos Nus , Piper betle , Folhas de Planta , Células Tumorais Cultivadas , Células U937 , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...