Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemphyschem ; 13(12): 3047-52, 2012 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-22431387

RESUMO

A comparative study of benzene oxidation at boron-doped diamond (BDD) and nitrogenated nanocrystalline diamond (NCD) anodes in 0.5 M K(2)SO(4) aqueous solution is conducted by using cyclic voltammetry and electrochemical impedance spectroscopy. It is shown by measurements of differential capacitance and anodic current that during the benzene oxidation at the BDD electrode, adsorption of a reaction intermediate occurs, which partially blocks the electrode surface and lowers the anodic current. At the NCD electrode, benzene is oxidized concurrently with oxygen evolution, a (quinoid) intermediate being adsorbed at the electrode. The adsorption and the electrode surface blocking are reflected in the impedance-frequency and impedance-potential complex-plane plots.

2.
J Nanosci Nanotechnol ; 9(6): 3665-71, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19504900

RESUMO

Dramatic changes in wettability of diamond and graphite are observed when these materials are prepared in nanostructured forms--undoped and nitrogen-doped ultrananocrystalline diamond (UNCD) films, and graphite nanowalls (GNW), respectively. The nanostructured carbon films were deposited on Si by microwave plasma CVD processes. The advancing contact angle theta for water on hydrogenated undoped UNCD films increases to 106 +/- 3 degrees compared to hydrogenated single crystal diamond (theta = 92 degrees). Nitrogen doping (N2 addition to plasma) during UNCD growth makes the film more hydrophilic. The GNW films exhibited superhydrophobic behavior with theta = 144 +/- 3 degrees for water, which is higher than the contact angle of monocrystalline graphite (the basal plane) by a factor of 1.8. No chemical surface treatment is necessary to achieve such high hydrophobicity, it is accomplished solely by a specific (nanoporous, high aspect ratio) surface morphology with very low free surface energy inherent in it. The wetting behaviour of nanostructured films can be described with the Cassie-Baxter equation for heterophase nanoporous surfaces. Oxidation and hydrogenation of UNCD films make it possible to control theta over a much wider range as compared to a single crystal diamond. The influence of diamond grain size on wetting is considered taking into account the surface treatment. The corresponding variation in surface energy has been determined by the modified Young's equation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA