Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 11(1): 4671, 2020 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-32938910

RESUMO

The interconversion of charge and spin currents via spin-Hall effect is essential for spintronics. Energy-efficient and deterministic switching of magnetization can be achieved when spin polarizations of these spin currents are collinear with the magnetization. However, symmetry conditions generally restrict spin polarizations to be orthogonal to both the charge and spin flows. Spin polarizations can deviate from such direction in nonmagnetic materials only when the crystalline symmetry is reduced. Here, we show control of the spin polarization direction by using a non-collinear antiferromagnet Mn3GaN, in which the triangular spin structure creates a low magnetic symmetry while maintaining a high crystalline symmetry. We demonstrate that epitaxial Mn3GaN/permalloy heterostructures can generate unconventional spin-orbit torques at room temperature corresponding to out-of-plane and Dresselhaus-like spin polarizations which are forbidden in any sample with two-fold rotational symmetry. Our results demonstrate an approach based on spin-structure design for controlling spin-orbit torque, enabling high-efficient antiferromagnetic spintronics.

2.
Sci Adv ; 5(11): eaat9476, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31723596

RESUMO

Measuring the behavior of redox-active molecules in space and time is crucial for understanding chemical and biological systems and for developing new technologies. Optical schemes are noninvasive and scalable, but usually have a slow response compared to electrical detection methods. Furthermore, many fluorescent molecules for redox detection degrade in brightness over long exposure times. Here, we show that the photoluminescence of "pixel" arrays of monolayer MoS2 can image spatial and temporal changes in redox molecule concentration. Because of the strong dependence of MoS2 photoluminescence on doping, changes in the local chemical potential substantially modulate the photoluminescence of MoS2, with a sensitivity of 0.9 mV / Hz on a 5 µm × 5 µm pixel, corresponding to better than parts-per-hundred changes in redox molecule concentration down to nanomolar concentrations at 100-ms frame rates. This provides a new strategy for visualizing chemical reactions and biomolecules with a two-dimensional material screen.

3.
Proc Natl Acad Sci U S A ; 116(33): 16186-16191, 2019 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-31350347

RESUMO

Spin-orbit coupling (SOC), the interaction between the electron spin and the orbital angular momentum, can unlock rich phenomena at interfaces, in particular interconverting spin and charge currents. Conventional heavy metals have been extensively explored due to their strong SOC of conduction electrons. However, spin-orbit effects in classes of materials such as epitaxial 5d-electron transition-metal complex oxides, which also host strong SOC, remain largely unreported. In addition to strong SOC, these complex oxides can also provide the additional tuning knob of epitaxy to control the electronic structure and the engineering of spin-to-charge conversion by crystalline symmetry. Here, we demonstrate room-temperature generation of spin-orbit torque on a ferromagnet with extremely high efficiency via the spin-Hall effect in epitaxial metastable perovskite SrIrO3 We first predict a large intrinsic spin-Hall conductivity in orthorhombic bulk SrIrO3 arising from the Berry curvature in the electronic band structure. By manipulating the intricate interplay between SOC and crystalline symmetry, we control the spin-Hall torque ratio by engineering the tilt of the corner-sharing oxygen octahedra in perovskite SrIrO3 through epitaxial strain. This allows the presence of an anisotropic spin-Hall effect due to a characteristic structural anisotropy in SrIrO3 with orthorhombic symmetry. Our experimental findings demonstrate the heteroepitaxial symmetry design approach to engineer spin-orbit effects. We therefore anticipate that these epitaxial 5d transition-metal oxide thin films can be an ideal building block for low-power spintronics.

4.
Phys Rev Lett ; 122(7): 077201, 2019 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-30848626

RESUMO

Despite intense efforts it has remained unresolved whether and how interfacial spin-orbit coupling (ISOC) affects spin transport across heavy-metal (HM)-ferromagnet (FM) interfaces. Here we report conclusive experiment evidence that the ISOC at HM/FM interfaces is the dominant mechanism for "spin memory loss". An increase in ISOC significantly reduces, in a linear manner, the dampinglike spin-orbit torque (SOT) exerted on the FM layer via degradation of the spin transparency of the interface for spin currents generated in the HM. In addition, the fieldlike SOT is also dominated by the spin Hall contribution of the HM and decreases with increasing ISOC. This work reveals that ISOC at HM/FM interfaces should be minimized to advance efficient SOT devices through atomic layer passivation of the HM/FM interface or other means.

5.
Phys Rev Lett ; 120(9): 097203, 2018 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-29547325

RESUMO

Robust spin Hall effects (SHE) have recently been observed in nonmagnetic heavy metal systems with strong spin-orbit interactions. These SHE are either attributed to an intrinsic band-structure effect or to extrinsic spin-dependent scattering from impurities, namely, side jump or skew scattering. Here we report on an extraordinarily strong spin Hall effect, attributable to spin fluctuations, in ferromagnetic Fe_{x}Pt_{1-x} alloys near their Curie point, tunable with x. This results in a dampinglike spin-orbit torque being exerted on an adjacent ferromagnetic layer that is strongly temperature dependent in this transition region, with a peak value that indicates a lower bound 0.34±0.02 for the peak spin Hall ratio within the FePt. We also observe a pronounced peak in the effective spin-mixing conductance of the FM/FePt interface, and determine the spin diffusion length in these Fe_{x}Pt_{1-x} alloys. These results establish new opportunities for fundamental studies of spin dynamics and transport in ferromagnetic systems with strong spin fluctuations, and a new pathway for efficiently generating strong spin currents for applications.

6.
Nano Lett ; 16(10): 5987-5992, 2016 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-27327619

RESUMO

We investigate fast-pulse switching of in-plane-magnetized magnetic tunnel junctions (MTJs) within 3-terminal devices in which spin-transfer torque is applied to the MTJ by the giant spin Hall effect. We measure reliable switching, with write error rates down to 10-5, using current pulses as short as just 2 ns in duration. This represents the fastest reliable switching reported to date for any spin-torque-driven magnetic memory geometry and corresponds to a characteristic time scale that is significantly shorter than predicted possible within a macrospin model for in-plane MTJs subject to thermal fluctuations at room temperature. Using micromagnetic simulations, we show that in the three-terminal spin-Hall devices the Oersted magnetic field generated by the pulse current strongly modifies the magnetic dynamics excited by the spin-Hall torque, enabling this unanticipated performance improvement. Our results suggest that in-plane MTJs controlled by Oersted-field-assisted spin-Hall torque are a promising candidate for both cache memory applications requiring high speed and for cryogenic memories requiring low write energies.

7.
Phys Rev Lett ; 116(12): 126601, 2016 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-27058088

RESUMO

We report measurements of the spin torque efficiencies in perpendicularly magnetized Pt/Co bilayers where the Pt resistivity ρ_{Pt} is strongly dependent on thickness t_{Pt}. The dampinglike spin Hall torque efficiency per unit current density ξ_{DL}^{j} varies significantly with t_{Pt}, exhibiting a peak value ξ_{DL}^{j}=0.12 at t_{Pt}=2.8-3.9 nm. In contrast, ξ_{DL}^{j}/ρ_{Pt} increases monotonically with t_{Pt} and saturates for t_{Pt}>5 nm, consistent with an intrinsic spin Hall effect mechanism, in which ξ_{DL}^{j} is enhanced by an increase in ρ_{Pt}. Assuming the Elliott-Yafet spin scattering mechanism dominates, we estimate that the spin diffusion length λ_{s}=(0.77±0.08)×10^{-15} Ω·m^{2}/ρ_{Pt}.

8.
Nature ; 516(7531): 370-3, 2014 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-25519134

RESUMO

The technological appeal of multiferroics is the ability to control magnetism with electric field. For devices to be useful, such control must be achieved at room temperature. The only single-phase multiferroic material exhibiting unambiguous magnetoelectric coupling at room temperature is BiFeO3 (refs 4 and 5). Its weak ferromagnetism arises from the canting of the antiferromagnetically aligned spins by the Dzyaloshinskii-Moriya (DM) interaction. Prior theory considered the symmetry of the thermodynamic ground state and concluded that direct 180-degree switching of the DM vector by the ferroelectric polarization was forbidden. Instead, we examined the kinetics of the switching process, something not considered previously in theoretical work. Here we show a deterministic reversal of the DM vector and canted moment using an electric field at room temperature. First-principles calculations reveal that the switching kinetics favours a two-step switching process. In each step the DM vector and polarization are coupled and 180-degree deterministic switching of magnetization hence becomes possible, in agreement with experimental observation. We exploit this switching to demonstrate energy-efficient control of a spin-valve device at room temperature. The energy per unit area required is approximately an order of magnitude less than that needed for spin-transfer torque switching. Given that the DM interaction is fundamental to single-phase multiferroics and magnetoelectrics, our results suggest ways to engineer magnetoelectric switching and tailor technologically pertinent functionality for nanometre-scale, low-energy-consumption, non-volatile magnetoelectronics.

9.
Nature ; 511(7510): 449-51, 2014 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-25056062

RESUMO

Magnetic devices are a leading contender for the implementation of memory and logic technologies that are non-volatile, that can scale to high density and high speed, and that do not wear out. However, widespread application of magnetic memory and logic devices will require the development of efficient mechanisms for reorienting their magnetization using the least possible current and power. There has been considerable recent progress in this effort; in particular, it has been discovered that spin-orbit interactions in heavy-metal/ferromagnet bilayers can produce strong current-driven torques on the magnetic layer, via the spin Hall effect in the heavy metal or the Rashba-Edelstein effect in the ferromagnet. In the search for materials to provide even more efficient spin-orbit-induced torques, some proposals have suggested topological insulators, which possess a surface state in which the effects of spin-orbit coupling are maximal in the sense that an electron's spin orientation is fixed relative to its propagation direction. Here we report experiments showing that charge current flowing in-plane in a thin film of the topological insulator bismuth selenide (Bi2Se3) at room temperature can indeed exert a strong spin-transfer torque on an adjacent ferromagnetic permalloy (Ni81Fe19) thin film, with a direction consistent with that expected from the topological surface state. We find that the strength of the torque per unit charge current density in Bi2Se3 is greater than for any source of spin-transfer torque measured so far, even for non-ideal topological insulator films in which the surface states coexist with bulk conduction. Our data suggest that topological insulators could enable very efficient electrical manipulation of magnetic materials at room temperature, for memory and logic applications.

10.
Phys Rev Lett ; 109(18): 186602, 2012 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-23215306

RESUMO

We show that a direct current in a tantalum microstrip can induce steady-state magnetic oscillations in an adjacent nanomagnet through spin torque from the spin Hall effect (SHE). The oscillations are detected electrically via a magnetic tunnel junction (MTJ) contacting the nanomagnet. The oscillation frequency can be controlled using the MTJ bias to tune the magnetic anisotropy. In this 3-terminal device, the SHE torque and the MTJ bias therefore provide independent controls of the oscillation amplitude and frequency, enabling new approaches for developing tunable spin torque nano-oscillators.

11.
Phys Rev Lett ; 109(9): 096602, 2012 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-23002867

RESUMO

We show that in a perpendicularly magnetized Pt/Co bilayer the spin-Hall effect (SHE) in Pt can produce a spin torque strong enough to efficiently rotate and switch the Co magnetization. We calculate the phase diagram of switching driven by this torque, finding quantitative agreement with experiments. When optimized, the SHE torque can enable memory and logic devices with similar critical currents and improved reliability compared to conventional spin-torque switching. We suggest that the SHE torque also affects current-driven magnetic domain wall motion in Pt/ferromagnet bilayers.

12.
Phys Rev Lett ; 108(14): 147201, 2012 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-22540819

RESUMO

A pure spin current generated within a nonlocal spin valve can exert a spin-transfer torque on a nanomagnet. This nonlocal torque enables new design schemes for magnetic memory devices that do not require the application of large voltages across tunnel barriers that can suffer electrical breakdown. Here we report a quantitative measurement of this nonlocal spin torque using spin-torque-driven ferromagnetic resonance. Our measurement agrees well with the prediction of an effective circuit model for spin transport. Based on this model, we suggest strategies for optimizing the strength of nonlocal torque.

13.
Science ; 336(6081): 555-8, 2012 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-22556245

RESUMO

Spin currents can apply useful torques in spintronic devices. The spin Hall effect has been proposed as a source of spin current, but its modest strength has limited its usefulness. We report a giant spin Hall effect (SHE) in ß-tantalum that generates spin currents intense enough to induce efficient spin-torque switching of ferromagnets at room temperature. We quantify this SHE by three independent methods and demonstrate spin-torque switching of both out-of-plane and in-plane magnetized layers. We furthermore implement a three-terminal device that uses current passing through a tantalum-ferromagnet bilayer to switch a nanomagnet, with a magnetic tunnel junction for read-out. This simple, reliable, and efficient design may eliminate the main obstacles to the development of magnetic memory and nonvolatile spin logic technologies.

14.
Philos Trans A Math Phys Eng Sci ; 369(1951): 3617-30, 2011 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-21859725

RESUMO

We discuss recent highlights from research at Cornell University, Ithaca, New York, regarding the use of spin-transfer torques to control magnetic moments in nanoscale ferromagnetic devices. We highlight progress on reducing the critical currents necessary to produce spin-torque-driven magnetic switching, quantitative measurements of the magnitude and direction of the spin torque in magnetic tunnel junctions, and single-shot measurements of the magnetic dynamics generated during thermally assisted spin-torque switching.


Assuntos
Magnetismo/instrumentação , Nanoestruturas/química , Nanotecnologia/métodos , Algoritmos , Modelos Estatísticos , Oscilometria/instrumentação , Probabilidade , Temperatura , Fatores de Tempo , Torque
15.
Nature ; 474(7350): E6, 2011 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-21654757
16.
Phys Rev Lett ; 106(16): 167202, 2011 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-21599407

RESUMO

We present the first space- and time-resolved images of the spin-torque-induced steady-state oscillation of a magnetic vortex in a spin-valve nanostructure. We find that the vortex structure in a nanopillar is considerably more complicated than the 2D idealized structure often-assumed, which has important implications for the driving efficiency. The sense of the vortex gyration is uniquely determined by the vortex core polarity, confirming that the spin-torque acts as a source of negative damping even in such a strongly nonuniform magnetic system. The orbit radius is ∼10 nm, in agreement with micromagnetic simulations.

17.
Phys Rev Lett ; 106(3): 036601, 2011 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-21405285

RESUMO

We demonstrate that the spin Hall effect in a thin film with strong spin-orbit scattering can excite magnetic precession in an adjacent ferromagnetic film. The flow of alternating current through a Pt/NiFe bilayer generates an oscillating transverse spin current in the Pt, and the resultant transfer of spin angular momentum to the NiFe induces ferromagnetic resonance dynamics. The Oersted field from the current also generates a ferromagnetic resonance signal but with a different symmetry. The ratio of these two signals allows a quantitative determination of the spin current and the spin Hall angle.

18.
Nano Lett ; 11(4): 1814-8, 2011 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-21434673

RESUMO

We achieve direct electrical readout of the wavelength and polarization dependence of the plasmon resonance in individual gold nanogap antennas by positioning a graphene nanoconstriction within the gap as a localized photodetector. The polarization sensitivities can be as large as 99%, while the plasmon-induced photocurrent enhancement is 2-100. The plasmon peak frequency, polarization sensitivity, and photocurrent enhancement all vary between devices, indicating the degree to which the plasmon resonance is sensitive to nanometer-scale irregularities.


Assuntos
Eletrodos , Grafite/química , Grafite/efeitos da radiação , Nanoestruturas/química , Nanotecnologia/instrumentação , Fotometria/instrumentação , Ressonância de Plasmônio de Superfície/instrumentação , Desenho de Equipamento , Análise de Falha de Equipamento , Luz , Nanoestruturas/efeitos da radiação , Tamanho da Partícula
19.
Science ; 328(5984): 1370-3, 2010 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-20538943

RESUMO

The ability to make electrical contact to single molecules creates opportunities to examine fundamental processes governing electron flow on the smallest possible length scales. We report experiments in which we controllably stretched individual cobalt complexes having spin S = 1, while simultaneously measuring current flow through the molecule. The molecule's spin states and magnetic anisotropy were manipulated in the absence of a magnetic field by modification of the molecular symmetry. This control enabled quantitative studies of the underscreened Kondo effect, in which conduction electrons only partially compensate the molecular spin. Our findings demonstrate a mechanism of spin control in single-molecule devices and establish that they can serve as model systems for making precision tests of correlated-electron theories.

20.
Phys Rev Lett ; 104(9): 097201, 2010 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-20367007

RESUMO

We report single-shot measurements of resistance versus time for thermally assisted spin-torque switching in magnetic tunnel junctions. We achieve the sensitivity to resolve the magnetic dynamics prior to as well as during switching, yielding detailed views of switching modes and variations between events. Analyses of individual traces allow measurements of coherence times, nonequilibrium excitation spectra, and variations in magnetization precession amplitude. We find that with a small in-plane hard-axis magnetic field the switching dynamics are more spatially coherent than for a zero field.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...