Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Acta Virol ; 63(4): 366-372, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31802679

RESUMO

Analysis of a transcriptome dataset obtained from tissue samples of the eelgrass Zostera muelleri, an aquatic flowering plant species of the family Zosteraceae, yielded three genome sequence contigs of a novel RNA virus. Sequence comparison and phylogenetic analysis revealed that the novel RNA virus, named Zostera virus T (ZoVT), belongs to the genus Tepovirus of the family Betaflexiviridae. The three genome contigs of ZoVT showed 88.2‒97.2% nucleotide sequence identity to each other, indicating that they descended from a common ancestor. The ZoVT genome contains three open reading frames (ORFs): ORF1 encodes a 1816 amino acid (aa) replicase (REP) with RNA-dependent RNA polymerase (RdRp) activity; ORF2, a 398 aa movement protein (MP); and ORF3, a 240 aa coat protein (CP). The phylogenetic analysis using REP sequences of ZoVT and other Betaflexiviridae viruses showed that Prunus virus T is the closest known virus to ZoVT, whereas potato virus T, the type species of the genus Tepovirus, is the second closest virus. Genome sequences of ZoVT, which is the third tepovirus species identified to date, may be useful for investigating the evolution and molecular biology of tepoviruses. Keywords: Zostera virus T; Tepovirus; Betaflexiviridae; eelgrass; Zostera muelleri.


Assuntos
Flexiviridae , Zosteraceae , Flexiviridae/classificação , Flexiviridae/genética , Genoma Viral , Fases de Leitura Aberta , Filogenia , RNA Viral/genética , Zosteraceae/virologia
2.
Sci Rep ; 5: 17051, 2015 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-26592440

RESUMO

Seagrass meadows are threatened by coastal development and global change. In the face of these pressures, molecular techniques such as reverse transcription quantitative real-time PCR (RT-qPCR) have great potential to improve management of these ecosystems by allowing early detection of chronic stress. In RT-qPCR, the expression levels of target genes are estimated on the basis of reference genes, in order to control for RNA variations. Although determination of suitable reference genes is critical for RT-qPCR studies, reports on the evaluation of reference genes are still absent for the major Australian species Zostera muelleri subsp. capricorni (Z. muelleri). Here, we used three different software (geNorm, NormFinder and Bestkeeper) to evaluate ten widely used reference genes according to their expression stability in Z. muelleri exposed to light limitation. We then combined results from different software and used a consensus rank of four best reference genes to validate regulation in Photosystem I reaction center subunit IV B and Heat Stress Transcription factor A- gene expression in Z. muelleri under light limitation. This study provides the first comprehensive list of reference genes in Z. muelleri and demonstrates RT-qPCR as an effective tool to identify early responses to light limitation in seagrass.


Assuntos
Regulação da Expressão Gênica de Plantas , Genes Essenciais , Genes de Plantas , Reação em Cadeia da Polimerase em Tempo Real/normas , Software , Zosteraceae/genética , Adaptação Fisiológica/genética , Proteínas de Ligação a DNA/genética , Ecossistema , Fatores de Transcrição de Choque Térmico , Proteínas de Choque Térmico/genética , Luz , Complexo de Proteína do Fotossistema I/genética , Proteínas de Plantas/genética , Padrões de Referência , Estresse Fisiológico , Fatores de Transcrição/genética
3.
Mar Pollut Bull ; 83(2): 430-9, 2014 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-23948090

RESUMO

Seagrasses are among the planet's most effective natural ecosystems for sequestering (capturing and storing) carbon (C); but if degraded, they could leak stored C into the atmosphere and accelerate global warming. Quantifying and modelling the C sequestration capacity is therefore critical for successfully managing seagrass ecosystems to maintain their substantial abatement potential. At present, there is no mechanism to support carbon financing linked to seagrass. For seagrasses to be recognised by the IPCC and the voluntary C market, standard stock assessment methodologies and inventories of seagrass C stocks are required. Developing accurate C budgets for seagrass meadows is indeed complex; we discuss these complexities, and, in addition, we review techniques and methodologies that will aid development of C budgets. We also consider a simple process-based data assimilation model for predicting how seagrasses will respond to future change, accompanied by a practical list of research priorities.


Assuntos
Alismatales/metabolismo , Sequestro de Carbono , Carbono/metabolismo , Ecossistema , Política Ambiental , Modelos Biológicos , Atmosfera
4.
Mar Pollut Bull ; 64(11): 2421-7, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22959173

RESUMO

To improve the effectiveness of oil spill mitigation, we developed a rapid, logistically simple protocol to detect petrochemical stress on seagrass. Sections of leaf blades from Zostera muelleri subsp. capricorni were exposed to the water accommodated fraction (WAF) of non-dispersed and dispersed Tapis crude oil and fuel oil (IFO-380) for 5h. Photosynthetic health was monitored by assessing changes in effective quantum yield of photosystem II (ΔF/F(m)(')) and chlorophyll a pigment concentrations. Loss of total petroleum hydrocarbons (TPH) was measured using an oil-in-water fluorometer, whilst GC-MS analyses quantified the hydrocarbon components within each treatment. Few significant differences were detected in the chlorophyll a pigment analyses; however, ΔF/F(m)(') appeared sensitive to petrochemical exposure. Dispersing both types of oil resulted in a substantial increase in the TPH of the WAF and was generally correlated with a greater physiological impact to the seagrass health, compared with the oil alone.


Assuntos
Hidrocarbonetos/toxicidade , Petróleo/toxicidade , Testes de Toxicidade/métodos , Poluentes Químicos da Água/toxicidade , Zosteraceae/efeitos dos fármacos , Clorofila/metabolismo , Clorofila A , Laboratórios , Fotossíntese/efeitos dos fármacos , Testes de Toxicidade/normas , Zosteraceae/fisiologia
5.
Arch Environ Contam Toxicol ; 56(1): 30-8, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18449466

RESUMO

Growth inhibition bioassays with the microalga Nitzschia closterium have recently been applied in marine Toxicity Identification Evaluation (TIE) testing. However, the 48-h test duration can result in substantial loss of toxicants over time, which might lead to an underestimation of the sample toxicity. Although shorter-term microalgal bioassays can minimize such losses, there are few bioassays available and none are adapted for marine TIE testing. The acute (5-min) chlorophyll-a fluorescence bioassay is one alternative; however, this bioassay was developed for detecting herbicides in freshwater aquatic systems and its suitability for marine TIE testing was not known. In this study, a chlorophyll-a fluorescence bioassay using the marine microalga Isochrysis galbana was able to detect contaminants other than herbicides at environmentally relevant concentrations and tolerated the physical and chemical manipulations needed for a Phase I TIE. Phase I TIE procedures were successfully developed using this chlorophyll-a fluorescence bioassay and used to identify all classes of contaminants present in a synthetic mixture of known chemical composition. In addition, TIEs with both the acute fluorescence bioassay and the standard growth inhibition bioassay identified the same classes of toxicants in a sample of an unknown complex effluent. Even though the acute chlorophyll-a fluorescence end point was less sensitive than the chronic cell division end point, TIEs with the chlorophyll-a fluorescence bioassay provided a rapid and attractive alternative to longer-duration bioassays.


Assuntos
Bioensaio/métodos , Clorofila/química , Diatomáceas/efeitos dos fármacos , Testes de Toxicidade Aguda/métodos , Poluentes Químicos da Água/toxicidade , Xenobióticos/toxicidade , Clorofila/metabolismo , Diatomáceas/crescimento & desenvolvimento , Diatomáceas/metabolismo , Relação Dose-Resposta a Droga , Monitoramento Ambiental/métodos , Fluorescência
6.
J Phycol ; 44(5): 1204-11, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27041717

RESUMO

Assessments of nutrient-limitation in microalgae using chl a fluorescence have revealed that nitrogen and phosphorus depletion can be detected as a change in chl a fluorescence signal when nutrient-starved algae are resupplied with the limiting nutrient. This photokinetic phenomenon is known as a nutrient-induced fluorescence transient, or NIFT. Cultures of the unicellular marine chlorophyte Dunaliella tertiolecta Butcher were grown under phosphate starvation to investigate the photophysiological mechanism behind the NIFT response. A combination of low temperature (77 K) fluorescence, photosynthetic inhibitors, and nonphotochemical quenching analyses were used to determine that the NIFT response is associated with changes in energy distribution between PSI and PSII and light-stress-induced nonphotochemical quenching (NPQ). Previous studies point to state transitions as the likely mechanism behind the NIFT response; however, our results show that state transitions are not solely responsible for this phenomenon. This study shows that an interaction of at least two physiological processes is involved in the rapid quenching of chl a fluorescence observed in P-starved D. tertiolecta: (1) state transitions to provide the nutrient-deficient cell with metabolic energy for inorganic phosphate (Pi )-uptake and (2) energy-dependent quenching to allow the nutrient-stressed cell to avoid photodamage from excess light energy during nutrient uptake.

7.
Biosens Bioelectron ; 20(7): 1443-51, 2005 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-15590302

RESUMO

Mounting concerns regarding the environmental impact of herbicides has meant a growing requirement for accurate, timely information regarding herbicide residue contamination of, in particular, aquatic systems. Conventional methods of detection remain limited in terms of practicality due to high costs of operation and the specialised information that analysis provides. A new phytotoxicity bioassay was trialled for the detection of herbicide residues in filter-purified (Milli-Q) as well as natural waters. The performance of the system, which combines solid-phase extraction (SPE) with the ToxY-PAM dual-channel yield analyser (Heinz Walz GmbH), was tested alongside the traditional method of liquid chromatography-mass spectrometry (LC-MS). The assay methodology was found to be highly sensitive (LOD 0.1 ng L(-1) diuron) with good reproducibility. The study showed that the assay protocol is time effective and can be employed for the aquatic screening of herbicide residues in purified as well as natural waters.


Assuntos
Técnicas Biossensoriais , Testes de Toxicidade , Água/análise
8.
Photosynth Res ; 82(1): 59-72, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-16228613

RESUMO

Mass coral bleaching is linked to elevated sea surface temperatures, 1-2 degrees C above average, during periods of intense light. These conditions induce the expulsion of zooxanthellae from the coral host in response to photosynthetic damage in the algal symbionts. The mechanism that triggers this release has not been clearly established and to further our knowledge of this process, fluorescence rise kinetics have been studied for the first time. Corals that were exposed to elevated temperature (33 degrees C) and light (280 mumol photons m(-2) s(-1)), showed distinct changes in the fast polyphasic induction of chlorophyll-a fluorescence, indicating biophysical changes in the photochemical processes. The fluorescence rise over the first 2000ms was monitored in three species of corals for up to 8 h, with a PEA fluorometer and an imaging-PAM. Pocillopora damicornis showed the least impact on photosynthetic apparatus, while Acropora nobilis was the most sensitive, with Cyphastrea serailia intermediate between the other two species. A. nobilis showed a remarkable capacity for recovery from bleaching conditions. For all three species, a steady decline in the slope of the initial rise and the height of the J-transient was observed, indicating the loss of functional Photosystem II (PS II) centres under elevated-temperature conditions. A significant loss of PS II centres was confirmed by a decline in photochemical quenching when exposed to bleaching stress. Non-photochemical quenching was identified as a significant mechanism for dissipating excess energy as heat under the bleaching conditions. Photophosphorylation could explain this decline in PS II activity. State transitions, a component of non-photochemical quenching, was a probable cause of the high non-photochemical quenching during bleaching and this mechanism is associated with the phosphorylation-induced dissociation of the light harvesting complexes from the PS II reaction centres. This reversible process may account for the coral recovery, particularly in A. nobilis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA