Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pharmacol Biochem Behav ; 224: 173543, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36933620

RESUMO

ProSAAS is one of the most abundant proteins in the brain and is processed into several smaller peptides. One of which, BigLEN, is an endogenous ligand for the G protein-coupled receptor, GPR171. Recent work in rodent models has shown that a small-molecule ligand for GPR171, MS15203, increases morphine antinociception and is effective in lessening chronic pain. While these studies provide evidence for GPR171 as a possible pain target, its abuse liability has not yet been assessed and was evaluated in the current study. We first mapped the distribution of GPR171 and ProSAAS throughout the reward circuit of the brain using immunohistochemistry and showed that GPR171 and ProSAAS are localized in the hippocampus, basolateral amygdala, nucleus accumbens, prefrontal cortex. In the major dopaminergic structure, the ventral tegmental area (VTA), GPR171 appeared to be primarily localized in dopamine neurons while ProSAAS is outside of dopamine neurons. Next, MS15203 was administered to mice with or without morphine, and VTA slices were stained for the immediate early gene c-Fos as a marker of neuronal activation. Quantification of c-Fos-positive cells revealed no statistical difference between MS15203 and saline, suggesting that MS15203 does not increase VTA activation and dopamine release. The results of a conditioned place preference experiment showed that treatment with MS15203 produced no place preference indicating a lack of reward-related behavior. Taken together this data provides evidence that the novel pain therapeutic, MS15203, has minimal reward liability. Therefore, GPR171 deserves further exploration as a pain target. SIGNIFICANCE STATEMENT: MS15203, a drug that activates the receptor GPR171, was previously shown to increase morphine analgesia. The authors use in vivo and histological techniques to show that it fails to activate the rodent reward circuitry, providing support for the continued exploration of MS15203 as a novel pain drug, and GPR171 a novel pain target.


Assuntos
Morfina , Recompensa , Camundongos , Animais , Ligantes , Morfina/farmacologia , Núcleo Accumbens/metabolismo , Área Tegmentar Ventral/metabolismo , Neurônios Dopaminérgicos , Dor/tratamento farmacológico , Dor/metabolismo , Receptores Acoplados a Proteínas G/metabolismo
2.
J Neurochem ; 159(3): 590-602, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34499746

RESUMO

Morphine is a potent opioid analgesic with high propensity for the development of antinociceptive tolerance. Morphine antinociception and tolerance are partially regulated by the midbrain ventrolateral periaqueductal gray (vlPAG). However, the majority of research evaluating mu-opioid receptor signaling has focused on males. Here, we investigate kinase activation and localization patterns in the vlPAG following acute and chronic morphine treatment in both sexes. Male and female mice developed rapid antinociceptive tolerance to morphine (10 mg/kg i.p.) on the hot plate assay, but tolerance did not develop in males on the tail flick assay. Quantitative fluorescence immunohistochemistry was used to map and evaluate the activation of extracellular signal-regulated kinase 1/2 (ERK 1/2), protein kinase-C (PKC), and protein kinase-A (PKA). We observed significantly greater phosphorylated ERK 1/2 in the vlPAG of chronic morphine-treated animals which co-localized with the endosomal marker, Eea1. We note that pPKC is significantly elevated in the vlPAG of both sexes following chronic morphine treatment. We also observed that although PKA activity is elevated following chronic morphine treatment in both sexes, there is a significant reduction in the nuclear translocation of its phosphorylated substrate. Taken together, this study demonstrates increased activation of ERK 1/2, PKC, and PKA in response to repeated morphine treatment. The study opens avenues to explore the impact of chronic morphine treatment on G-protein signaling and kinase nuclear transport.


Assuntos
Indução Enzimática/efeitos dos fármacos , Morfina/farmacologia , Substância Cinzenta Periaquedutal/efeitos dos fármacos , Substância Cinzenta Periaquedutal/enzimologia , Proteínas Quinases/biossíntese , Animais , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Tolerância a Medicamentos , Feminino , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Medição da Dor/efeitos dos fármacos , Proteína Quinase C/metabolismo , Transporte Proteico , Caracteres Sexuais , Proteínas de Transporte Vesicular/biossíntese , Proteínas de Transporte Vesicular/genética
3.
Commun Biol ; 4(1): 238, 2021 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-33619305

RESUMO

Antibodies represent powerful tools to examine signal transduction pathways. Here, we present a strategy integrating multiple state-of-the-art methods to produce, validate, and utilize antibodies. Focusing on understudied synaptic proteins, we generated 137 recombinant antibodies. We used yeast display antibody libraries from the B cells of immunized rabbits, followed by FACS sorting under stringent conditions to identify high affinity antibodies. The antibodies were validated by high-throughput functional screening, and genome editing. Next, we explored the temporal dynamics of signaling in single cells. A subset of antibodies targeting opioid receptors were used to examine the effect of treatment with opiates that have played central roles in the worsening of the 'opioid epidemic.' We show that morphine and fentanyl exhibit differential temporal dynamics of receptor phosphorylation. In summary, high-throughput approaches can lead to the identification of antibody-based tools required for an in-depth understanding of the temporal dynamics of opioid signaling.


Assuntos
Anticorpos/farmacologia , Especificidade de Anticorpos , Ensaios de Triagem em Larga Escala , Proteína Quinase C/antagonistas & inibidores , Receptores Opioides mu/antagonistas & inibidores , Sinapses/efeitos dos fármacos , Analgésicos Opioides/farmacologia , Animais , Anticorpos/imunologia , Linhagem Celular Tumoral , Ativação Enzimática , Fentanila/farmacologia , Células HEK293 , Humanos , Masculino , Camundongos Endogâmicos C57BL , Morfina/farmacologia , Fosforilação , Proteína Quinase C/imunologia , Proteína Quinase C/metabolismo , Coelhos , Receptores Opioides mu/imunologia , Receptores Opioides mu/metabolismo , Transdução de Sinais , Sinapses/imunologia , Sinapses/metabolismo , Fatores de Tempo
4.
Front Pain Res (Lausanne) ; 2: 695396, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35295419

RESUMO

Chronic pain is a growing public health crisis that requires exigent and efficacious therapeutics. GPR171 is a promising therapeutic target that is widely expressed through the brain, including within the descending pain modulatory regions. Here, we explore the therapeutic potential of the GPR171 agonist, MS15203, in its ability to alleviate chronic pain in male and female mice using a once-daily systemic dose (10 mg/kg, i.p.) of MS15203 over the course of 5 days. We found that in our models of Complete Freund's Adjuvant (CFA)-induced inflammatory pain and chemotherapy-induced peripheral neuropathy (CIPN), MS15203 did not alleviate thermal hypersensitivity and allodynia, respectively, in female mice. On the other hand, MS15203 treatment decreased the duration of thermal hypersensitivity in CFA-treated male mice following 3 days of once-daily administration. MS15203 treatment also produced an improvement in allodynia in male mice, but not female mice, in neuropathic pain after 5 days of treatment. Gene expression of GPR171 and that of its endogenous ligand BigLEN, encoded by the gene PCSK1N, were unaltered within the periaqueductal gray (PAG) in both male and female mice following inflammatory and neuropathic pain. However, following neuropathic pain in male mice, the protein levels of GPR171 were decreased in the PAG. Treatment with MS15203 then rescued the protein levels of GPR171 in the PAG of these mice. Taken together, our results identify GPR171 as a GPCR that displays sexual dimorphism in alleviation of chronic pain. Further, our results suggest that GPR171 and MS15203 have demonstrable therapeutic potential in the treatment of chronic pain.

5.
ACS Pharmacol Transl Sci ; 2(4): 219-229, 2019 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-31565698

RESUMO

Cannabinoid 1 (CB1R) and delta opioid receptors (DOR) associate to form heteromers that exhibit distinct pharmacological properties. Not much is known about CB1R-DOR heteromer location or signaling along the pain circuit in either animal models or patients with chemotherapy-induced peripheral neuropathy (CIPN). Here, we use paclitaxel to induce CIPN in mice and confirm the development of mechanical allodynia. Under these conditions, we find significant increases in CB1R-DOR heteromers in the dorsal spinal cord of mice with CIPN as well as in postmortem spinal cords from human subjects with CIPN compared to controls. Next, we investigated receptor signaling in spinal cords of mice with CIPN and found that treatment with a combination of low signaling doses of CB1R and DOR ligands leads to significant enhancement in G-protein activity that could be selectively blocked by the CB1R-DOR antibody. Consistent with this, administration of subthreshold doses of a combination of ligands (CB1R agonist, Hu-210, and DOR agonist, SNC80) leads to significant attenuation of allodynia in mice with CIPN that is not seen with the administration of individual ligands, and this could be blocked by the CB1R-DOR antibody. Together, these results imply that CB1R-DOR heteromers upregulated during CIPN-associated mechanical allodynia could serve as a potential target for treatment of neuropathic pain including CIPN.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...