Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Tumour Biol ; 43(1): 263-278, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34633333

RESUMO

BACKGROUND: Expression dysregulation of HOX homeobox genes has been observed in several cancers, including head and neck squamous cell carcinoma (HNSC). Although characterization of HOX gene roles in HNSC development has been reported, there is still a need to better understand their real contribution to tumorigenesis. OBJECTIVE: The present study aimed to evaluate the contribution of the protein-coding HOX genes (HOXA10, HOXC9, HOXC10, and HOXC13) in cellular processes related to carcinogenesis and progression of the HNSC. METHODS: Expression of HOX genes was analyzed in HNSC RNA-Seq data from The Cancer Genome Atlas (TCGA) and by RT-qPCR in different tumor cell lines. siRNA-mediated knockdown of HOXA10, HOXC9, HOXC10 or HOXC13 was performed in HNSC cell lines, and predicted transcriptional targets HOX genes was analyzed by bioinformatic. RESULTS: Thirty-one out of the 39 mammalian HOX genes were found upregulated in HNSC tissues and cell lines. The HOXC9, HOXC10 or HOXC13 knockdown attenuated cell migration, and lead to downregulation of epithelial-mesenchymal transition (EMT) markers, which were predicted as transcriptional targets of these three HOX genes. Diminished colony formation and cell cycle arrest after HOXC10 or HOXC13 knockdown were also observed, corroborating the fact that there was an enrichment for genes in proliferation/cell cycle pathways. CONCLUSIONS: In summary, we revealed roles for HOXC9, HOXC10, and HOXC13 in cell migration and proliferation/cell cycle progression in HNSC cells and suggested that those HOX members contribute to HNSC development possibly by regulating tumor growth and metastasis.


Assuntos
Genes Homeobox/genética , Neoplasias de Cabeça e Pescoço/genética , Neoplasias de Cabeça e Pescoço/patologia , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia , Animais , Biomarcadores Tumorais/genética , Carcinogênese/genética , Movimento Celular/genética , Proliferação de Células/genética , Humanos , Regulação para Cima
2.
Immunobiology ; 226(5): 152130, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34425415

RESUMO

In this review, we highlight the interaction of SARS-CoV-2 virus and host genomes, reporting the current studies on the sequence analysis of SARS-CoV-2 isolates and host genomes from diverse world populations. The main genetic variants that are present in both the virus and host genomes were particularly focused on the ACE2 and TMPRSS2 genes, and their impact on the patients' susceptibility to the virus infection and severity of the disease. Finally, the interaction of the virus and host non-coding RNAs is described in relation to their regulatory roles in target genes and/or signaling pathways critically associated with SARS-CoV-2 infection. Altogether, these studies provide a significant contribution to the knowledge of SARS-CoV-2 mechanisms of infection and COVID-19 pathogenesis. The described genetic variants and molecular factors involved in host/virus genome interactions have significantly contributed to defining patient risk groups, beyond those based on patients' age and comorbidities, and they are promising candidates to be potentially targeted in treatment strategies for COVID-19 and other viral infectious diseases.


Assuntos
COVID-19/genética , Genoma , Interações Hospedeiro-Patógeno/genética , RNA não Traduzido , SARS-CoV-2/genética , Enzima de Conversão de Angiotensina 2/genética , Animais , COVID-19/terapia , Genes Virais , Humanos , Serina Endopeptidases/genética
3.
BMC Cancer ; 21(1): 207, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33648461

RESUMO

BACKGROUND: Colorectal cancer (CRC) is one of the most common cancers worldwide; it is the fourth leading cause of death in the world and the third in Brazil. Mutations in the APC, DCC, KRAS and TP53 genes have been associated with the progression of sporadic CRC, occurring at defined pathological stages of the tumor progression and consequently modulating several genes in the corresponding signaling pathways. Therefore, the identification of gene signatures that occur at each stage during the CRC progression is critical and can present an impact on the diagnosis and prognosis of the patient. In this study, our main goal was to determine these signatures, by evaluating the gene expression of paired colorectal adenoma and adenocarcinoma samples to identify novel genetic markers in association to the adenoma-adenocarcinoma stage transition. METHODS: Ten paired adenoma and adenocarcinoma colorectal samples were subjected to microarray gene expression analysis. In addition, mutations in APC, KRAS and TP53 genes were investigated by DNA sequencing in paired samples of adenoma, adenocarcinoma, normal tissue, and peripheral blood from ten patients. RESULTS: Gene expression analysis revealed a signature of 689 differentially expressed genes (DEG) (fold-change> 2, p< 0.05), between the adenoma and adenocarcinoma paired samples analyzed. Gene pathway analysis using the 689 DEG identified important cancer pathways such as remodeling of the extracellular matrix and epithelial-mesenchymal transition. Among these DEG, the ETV4 stood out as one of the most expressed in the adenocarcinoma samples, further confirmed in the adenocarcinoma set of samples from the TCGA database. Subsequent in vitro siRNA assays against ETV4 resulted in the decrease of cell proliferation, colony formation and cell migration in the HT29 and SW480 colorectal cell lines. DNA sequencing analysis revealed KRAS and TP53 gene pathogenic mutations, exclusively in the adenocarcinomas samples. CONCLUSION: Our study identified a set of genes with high potential to be used as biomarkers in CRC, with a special emphasis on the ETV4 gene, which demonstrated involvement in proliferation and migration.


Assuntos
Adenocarcinoma/genética , Adenoma/genética , Neoplasias Colorretais/genética , Genes Neoplásicos , Proteínas de Neoplasias/fisiologia , Proteínas Proto-Oncogênicas c-ets/fisiologia , Adenocarcinoma/química , Adenocarcinoma/patologia , Adenoma/química , Adenoma/patologia , Idoso , Biomarcadores Tumorais/genética , Brasil , Divisão Celular/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Transformação Celular Neoplásica/genética , Neoplasias Colorretais/química , Neoplasias Colorretais/patologia , DNA de Neoplasias/genética , Progressão da Doença , Feminino , Regulação Neoplásica da Expressão Gênica , Ontologia Genética , Humanos , Masculino , Pessoa de Meia-Idade , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/genética , Proteínas Proto-Oncogênicas c-ets/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-ets/genética , Interferência de RNA , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/farmacologia , Análise Serial de Tecidos , Transcriptoma , Ensaio Tumoral de Célula-Tronco
4.
Genet Mol Biol ; 44(1 Suppl 1): e20200452, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35421211

RESUMO

Coronavirus disease 2019 (COVID-19), caused by the Severe Acute Respiratory Syndrome Coronavirus type 2 (SARS-CoV-2), is the largest pandemic in modern history with very high infection rates and considerable mortality. The disease, which emerged in China's Wuhan province, had its first reported case on December 29, 2019, and spread rapidly worldwide. On March 11, 2020, the World Health Organization (WHO) declared the COVID-19 outbreak a pandemic and global health emergency. Since the outbreak, efforts to develop COVID-19 vaccines, engineer new drugs, and evaluate existing ones for drug repurposing have been intensively undertaken to find ways to control this pandemic. COVID-19 therapeutic strategies aim to impair molecular pathways involved in the virus entrance and replication or interfere in the patients' overreaction and immunopathology. Moreover, nanotechnology could be an approach to boost the activity of new drugs. Several COVID-19 vaccine candidates have received emergency-use or full authorization in one or more countries, and others are being developed and tested. This review assesses the different strategies currently proposed to control COVID-19 and the issues or limitations imposed on some approaches by the human and viral genetic variability.

5.
Tumour Biol ; 42(5): 1010428320918050, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32456563

RESUMO

Homeobox genes function as master regulatory transcription factors during development, and their expression is often altered in cancer. The HOX gene family was initially studied intensively to understand how the expression of each gene was involved in forming axial patterns and shaping the body plan during embryogenesis. More recent investigations have discovered that HOX genes can also play an important role in cancer. The literature has shown that the expression of HOX genes may be increased or decreased in different tumors and that these alterations may differ depending on the specific HOX gene involved and the type of cancer being investigated. New studies are also emerging, showing the critical role of some members of the HOX gene family in tumor progression and variation in clinical response. However, there has been limited systematic evaluation of the various contributions of each member of the HOX gene family in the pathways that drive the common phenotypic changes (or "hallmarks") and that underlie the transformation of normal cells to cancer cells. In this review, we investigate the context of the engagement of HOX gene targets and their downstream pathways in the acquisition of competence of tumor cells to undergo malignant transformation and tumor progression. We also summarize published findings on the involvement of HOX genes in carcinogenesis and use bioinformatics methods to examine how their downstream targets and pathways are involved in each hallmark of the cancer phenotype.


Assuntos
Biomarcadores Tumorais/genética , Carcinogênese/genética , Genes Homeobox/genética , Neoplasias/genética , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Família Multigênica/genética , Fatores de Transcrição/genética
6.
Cancer Res ; 79(13): 3294-3305, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31101765

RESUMO

Dysregulation of miRNA expression is associated with multiple diseases, including cancers, in which small RNAs can have either oncogenic or tumor suppressive functions. Here we investigated the potential tumor suppressive function of miR-450a, one of the most significantly downregulated miRNAs in ovarian cancer. RNA-seq analysis of the ovarian cancer cell line A2780 revealed that overexpression of miR-450a suppressed multiple genes involved in the epithelial-to-mesenchymal transition (EMT). Overexpression of miR-450a reduced tumor migration and invasion and increased anoikis in A2780 and SKOV-3 cell lines and reduced tumor growth in an ovarian tumor xenographic model. Combined AGO-PAR-CLIP and RNA-seq analysis identified a panel of potential miR-450a targets, of which many, including TIMMDC1, MT-ND2, ACO2, and ATP5B, regulate energetic metabolism. Following glutamine withdrawal, miR-450a overexpression decreased mitochondrial membrane potential but increased glucose uptake and viability, characteristics of less invasive ovarian cancer cell lines. In summary, we propose that miR-450a acts as a tumor suppressor in ovarian cancer cells by modulating targets associated with glutaminolysis, which leads to decreased production of lipids, amino acids, and nucleic acids, as well as inhibition of signaling pathways associated with EMT. SIGNIFICANCE: miR-450a limits the metastatic potential of ovarian cancer cells by targeting a set of mitochondrial mRNAs to reduce glycolysis and glutaminolysis.Graphical Abstract: http://cancerres.aacrjournals.org/content/canres/79/13/3294/F1.large.jpg.


Assuntos
Biomarcadores Tumorais/metabolismo , Metabolismo Energético , Transição Epitelial-Mesenquimal , Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , Aconitato Hidratase/genética , Aconitato Hidratase/metabolismo , Animais , Apoptose , Biomarcadores Tumorais/genética , Ciclo Celular , Movimento Celular , Proliferação de Células , Feminino , Humanos , Potencial da Membrana Mitocondrial , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Proteínas de Transporte da Membrana Mitocondrial/genética , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial , ATPases Mitocondriais Próton-Translocadoras/genética , ATPases Mitocondriais Próton-Translocadoras/metabolismo , NADH Desidrogenase/genética , NADH Desidrogenase/metabolismo , Neoplasias Ovarianas/genética , Prognóstico , Taxa de Sobrevida , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
7.
Oncotarget ; 9(34): 23554-23563, 2018 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-29805755

RESUMO

Despite being a healthy tissue, the constituent cells of the placenta, share similar characteristics with tumor cells, such as increased cell growth, migration, and invasion. However, while these processes are stochastic and uncontrolled in cancer cells, in placenta they are precisely controlled. Since miRNAs have been reported to regulate genes that control the molecular mechanisms necessary for the development of both human placenta and cancer, we addressed for miRNAs highly expressed in the placenta that could be involved in tumorigenesis. Here, we assessed the miRNA profile in placenta samples using microarray analysis. The results showed that miR-451 and miR-720, highly expressed placental miRNAs, presented very low or undetectable expression in cancer cell lines compared to the normal placenta and healthy tissues. Additionally, transfection of miR-451 or miR-720 mimics in choriocarcinoma cell line (JEG3) and colorectal adenocarcinoma cell line (HT-29) resulted in impaired cell proliferation, decreased cell migration and invasion and reduced ability of colony formation. These findings provide evidence that placenta may work as an alternative model to identify novel miRNAs involved in pathways controlling tumorigenesis.

8.
Tumour Biol ; 37(11): 15087-15096, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27658780

RESUMO

Laryngeal squamous cell carcinoma (LSCC) is a very aggressive cancer, considered to be a subtype of the head and neck squamous cell carcinoma (HNSCC). Despite significant advances in the understanding and treatment of cancer, prognosis of patients with LSCC has not improved recently. In the present study, we sought to understand better the genetic mechanisms underlying LSCC development. Thirty-two tumor samples were collected from patients undergoing surgical resection of LSCC. The samples were submitted to whole-genome cDNA microarray analysis aiming to identify genetic targets in LSCC. We also employed bioinformatic approaches to expand our findings using the TCGA database and further performed functional assays, using human HNSCC cell lines, to evaluate viability, cell proliferation, and cell migration after silencing of selected genes. Eight members of the homeobox gene family (HOX) were identified to be overexpressed in LSCC samples when compared to normal larynx tissue. Quantitative RT-PCR analysis validated the overexpression of HOX gene family members in LSCC. Receiver operating characteristic (ROC) statistical method curve showed that the expression level of seven members of HOX gene family can distinguish tumor from nontumor tissue. Correlation analysis of clinical and gene expression data revealed that HOXC8 and HOXD11 genes were associated with the differentiation degree of tumors and regional lymph node metastases, respectively. Additionally, siRNA assays confirmed that HOXC8, HOXD10, and HOXD11 genes might be critical for cell colony proliferation and cell migration. According to our findings, several members of the HOX genes were overexpressed in LSCC samples and seem to be required in biological processes involved in tumor development. This suggests that HOX genes might play a critical role in the physiopathology of LSCC tumors.


Assuntos
Biomarcadores Tumorais/metabolismo , Carcinoma de Células Escamosas/patologia , Genes Homeobox/genética , Neoplasias Laríngeas/secundário , Recidiva Local de Neoplasia/patologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Apoptose , Biomarcadores Tumorais/genética , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/metabolismo , Proliferação de Células , Progressão da Doença , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Técnicas Imunoenzimáticas , Neoplasias Laríngeas/genética , Neoplasias Laríngeas/metabolismo , Metástase Linfática , Masculino , Pessoa de Meia-Idade , Recidiva Local de Neoplasia/genética , Recidiva Local de Neoplasia/metabolismo , RNA Mensageiro/genética , RNA Interferente Pequeno/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Células Tumorais Cultivadas
9.
PLoS One ; 11(3): e0151560, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27023770

RESUMO

LINC00629 and MIR503HG are long intergenic non-coding RNAs (lincRNAs) mapped on chromosome X (Xq26), a region enriched for genes associated with human reproduction. Genes highly expressed in normal reproductive tissues and cancers (CT genes) are well known as potential tumor biomarkers. This study aimed to characterize the structure, expression, function and regulation mechanism of MIR503HG and LINC00629 lincRNAs. According to our data, MIR503HG expression was almost exclusive to placenta and LINC00629 was highly expressed in placenta and other reproductive tissues. Further analysis, using a cancer cell lines panel, showed that MIR503HG and LINC00629 were expressed in 50% and 100% of the cancer cell lines, respectively. MIR503HG was expressed predominantly in the nucleus of JEG-3 choriocarcinoma cells. We observed a positively correlated expression between MIR503HG and LINC00629, and between the lincRNAs and neighboring miRNAs. Also, both LINC00629 and MIR503GH could be negatively regulated by DNA methylation in an indirect way. Additionally, we identified new transcripts for MIR503HG and LINC00629 that are relatively conserved when compared to other primates. Furthermore, we found that overexpression of MIR503HG2 and the three-exon LINC00629 new isoforms decreased invasion and migration potential of JEG-3 tumor cell line. In conclusion, our results suggest that lincRNAs MIR503HG and LINC00629 impaired migration and invasion capacities in a choriocarcinoma in vitro model, indicating a potential role in human reproduction and tumorigenesis. Moreover, the MIR503HG expression pattern found here could indicate a putative new tumor biomarker.


Assuntos
Movimento Celular/genética , MicroRNAs/genética , Placenta/metabolismo , RNA Longo não Codificante/genética , Azacitidina/farmacologia , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Sequência Conservada/genética , Metilação de DNA/genética , Evolução Molecular , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , MicroRNAs/metabolismo , Invasividade Neoplásica , Conformação de Ácido Nucleico , Gravidez , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , RNA Longo não Codificante/metabolismo , Reprodução/genética
11.
Proteome Sci ; 10(1): 53, 2012 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-22943417

RESUMO

BACKGROUND: The most frequent and malignant brain cancer is glioblastoma multiforme (GBM). In gliomas, tumor progression and poor prognosis are associated with the tumorigenic ability of the cells. U87MG cells (wild-type p53) are known to be tumorigenic in nude mice, but T98G cells (mutant p53) are not tumorigenic. We investigated the proteomic profiling of these two cell lines in order to gain new insights into the mechanisms that may be involved in tumorigenesis. RESULTS: We found 24 differentially expressed proteins between T98G and U87MG cells. Gene Ontology supports the notion that over-representation of differentially expressed proteins is involved in glycolysis, cell migration and stress oxidative response. Among those associated with the glycolysis pathway, TPIS and LDHB are up-regulated in U87MG cells. Measurement of glucose consumption and lactate production suggests that glycolysis is more effective in U87MG cells. On the other hand, G6PD expression was 3-fold higher in T98G cells and this may indicate a shift to the pentose-phosphate pathway. Moreover, GRP78 expression was also three-fold higher in T98G than in U87MG cells. Under thapsigargin treatment both cell lines showed increased GRP78 expression and the effect of this agent was inversely correlated to cell migration. Quantitative RT-PCR and immunohistochemistry of GRP78 in patient samples indicated a higher level of expression of GRP78 in grade IV tumors compared to grade I and non-neoplastic tissues, respectively. CONCLUSIONS: Taken together, these results suggest an important role of proteins involved in key functions such as glycolysis and cell migration that may explain the difference in tumorigenic ability between these two glioma cell lines and that may be extrapolated to the differential aggressiveness of glioma tumors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...