Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cancers (Basel) ; 16(4)2024 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-38398217

RESUMO

We performed an integrative transcriptomic in silico analysis using lung adenocarcinoma A549 cells treated with the neddylation inhibitor MLN4924 and the gefitinib-resistant PC9 cell line (PC9GR). We focused on the transcriptional effects of the top differentially expressed ncRNA biotypes and their correlating stemness factors. Interestingly, MLN4924-treated cells showed a significant upregulation of mRNAs involved in carcinogenesis, cell attachment, and differentiation pathways, as well as a parallel downregulation of stemness maintenance and survival signaling pathways, an effect that was inversely observed in PC9GR cells. Moreover, we found that stemness factor expression could be contrasted by selected up-regulated ncRNAs upon MLN4924 treatment in a dose and time-independent manner. Furthermore, upregulated miRNAs and lncRNA-targeted mRNAs showed an evident enrichment of proliferation, differentiation, and apoptosis pathways, while downregulated ncRNA-targeted mRNAs were implicated in stem cell maintenance. Finally, our results proved that stemness (KLF4 and FGFR2) and epithelial-mesenchymal transition (ZEB2, TWIST2, SNAI2, CDH2, and VIM) factors, which are highly expressed in PC9GR cells compared to gefitinib-sensitive PC9 cells, could be abrogated with the neddylation inhibitor MLN4924 mainly through activation of epithelial differentiation pathways, thus exerting a protective role in lung cancer cells and chemosensitivity against lung tumorigenic transformation.

2.
Front Genet ; 14: 1306600, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38299096

RESUMO

Environmental pollution nowadays has not only a direct correlation with human health changes but a direct social impact. Epidemiological studies have evidenced the increased damage to human health on a daily basis because of damage to the ecological niche. Rapid urban growth and industrialized societies importantly compromise air quality, which can be assessed by a notable accumulation of air pollutants in both the gas and the particle phases. Of them, particulate matter (PM) represents a highly complex mixture of organic and inorganic compounds of the most variable size, composition, and origin. PM being one of the most complex environmental pollutants, its accumulation also varies in a temporal and spatial manner, which challenges current analytical techniques used to investigate PM interactions. Nevertheless, the characterization of the chemical composition of PM is a reliable indicator of the composition of the atmosphere, the quality of breathed air in urbanized societies, industrial zones and consequently gives support for pertinent measures to avoid serious health damage. Epigenomic damage is one of the most promising biological mechanisms of air pollution-derived carcinogenesis. Therefore, this review aims to highlight the implication of PM exposure in diverse molecular mechanisms driving human diseases by altered epigenetic regulation. The presented findings in the context of pan-organic cancer, fibrosis, neurodegeneration and metabolic diseases may provide valuable insights into the toxicity effects of PM components at the epigenomic level and may serve as biomarkers of early detection for novel targeted therapies.

4.
Onco Targets Ther ; 15: 1211-1220, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36246733

RESUMO

Purpose: Cervical cancer (CC) is the second most frequent cancer in undeveloped countries. Serum biomarkers could be useful for evaluation of the treatment response and as a complementary means to improve diagnosis. The expression of galectin-9 is altered in cancer tissue, and higher concentrations are found in the serum of cancer patients. The objectives of this study were (a) to determine the serum galectin-9 concentration in patients with intraepithelial lesions and CC, (b) to determine if the concentration was related to the clinicopathological characteristics and (c) to determine if the galectin-9 concentration was related to its expression level in tumour tissue. Patients and Methods: In all, 222 serum samples from women with different diagnoses, including premalignant lesions and CC, as well as samples from women with normal cytology were included in the study. The serum galectin-9 concentration was determined by ELISA. To evaluate the expression level of galectin-9 in CC tissue, immunohistochemistry was performed in 34 CC biopsy specimens. Results: The galectin-9 concentration in the serum of CC patients (8.171 ng/mL) was increased compared with serum from women with normal epithelia (4.654 ng/mL) and those with low-grade (4.806 ng/mL) and high-grade (5.354 ng/mL) intraepithelial lesions (p value < 0.0001). The area under the ROC curve considering the CC group and the control group was 0.882. The optimal cut-off value was ≥6.88 ng/mL, the specificity obtained was 100%, and the sensitivity was 68.2%. In the CC group, the analysis of the clinical stage showed an increase of galectin-9 in the advanced stage IV group. Serum galectin-9 was not related to the level of galectin-9 expression in tissue, which suggests that galectin-9 is not secreted by tumour cells. Conclusion: The serum galectin-9 concentration is related to cancer progression, as the level of this protein is higher in patients with advanced-stage disease.

5.
Int J Mol Sci ; 23(17)2022 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-36076918

RESUMO

Epigenetic modifications are known to regulate cell phenotype during cancer progression, including breast cancer. Unlike genetic alterations, changes in the epigenome are reversible, thus potentially reversed by epi-drugs. Breast cancer, the most common cause of cancer death worldwide in women, encompasses multiple histopathological and molecular subtypes. Several lines of evidence demonstrated distortion of the epigenetic landscape in breast cancer. Interestingly, mammary cells isolated from breast cancer patients and cultured ex vivo maintained the tumorigenic phenotype and exhibited aberrant epigenetic modifications. Recent studies indicated that the therapeutic efficiency for breast cancer regimens has increased over time, resulting in reduced mortality. Future medical treatment for breast cancer patients, however, will likely depend upon a better understanding of epigenetic modifications. The present review aims to outline different epigenetic mechanisms including DNA methylation, histone modifications, and ncRNAs with their impact on breast cancer, as well as to discuss studies highlighting the central role of epigenetic mechanisms in breast cancer pathogenesis. We propose new research areas that may facilitate locus-specific epigenome editing as breast cancer therapeutics.


Assuntos
Neoplasias da Mama , Epigenoma , Biomarcadores , Neoplasias da Mama/diagnóstico , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Metilação de DNA , Detecção Precoce de Câncer , Epigênese Genética , Feminino , Humanos
6.
Biomolecules ; 12(4)2022 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-35454102

RESUMO

Environmental factors, including pollutants and lifestyle, constitute a significant role in severe, chronic pathologies with an essential societal, economic burden. The measurement of all environmental exposures and assessing their correlation with effects on individual health is defined as the exposome, which interacts with our unique characteristics such as genetics, physiology, and epigenetics. Epigenetics investigates modifications in the expression of genes that do not depend on the underlying DNA sequence. Some studies have confirmed that environmental factors may promote disease in individuals or subsequent progeny through epigenetic alterations. Variations in the epigenetic machinery cause a spectrum of different disorders since these mechanisms are more sensitive to the environment than the genome, due to the inherent reversible nature of the epigenetic landscape. Several epigenetic mechanisms, including modifications in DNA (e.g., methylation), histones, and noncoding RNAs can change genome expression under the exogenous influence. Notably, the role of long noncoding RNAs in epigenetic processes has not been well explored in the context of exposome-induced tumorigenesis. In the present review, our scope is to provide relevant evidence indicating that epigenetic alterations mediate those detrimental effects caused by exposure to environmental toxicants, focusing mainly on a multi-step regulation by diverse noncoding RNAs subtypes.


Assuntos
Epigênese Genética , Expossoma , Carcinogênese/genética , Metilação de DNA , Humanos , RNA não Traduzido/genética
7.
FEBS Open Bio ; 10(11): 2305-2315, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32902187

RESUMO

Galectin-9 levels have been reported to be altered in several cancer types, but the mechanism that regulates the expression of Galectin-9 has not been clarified. Galectin-9 is encoded by the LGALS9 gene, which gives rise to eight mRNA variants. The aims of this study were: (a) to identify the mRNA variants of LGALS9, (b) to characterize CpG methylation and H3K9 and H3K14 histone acetylation at the promoter of the LGALS9 gene, and (c) to characterize the relationship between these modifications and LGALS9 expression level in cervical cancer cells. All mRNA variants were detected in HaCaT (nontumoural keratinocytes) and SiHa cells, and seven were observed in HeLa cells. The promoter region of LGALS9 contains eight CpG dinucleotides. No hypermethylation pattern related to low LGALS9 expression was identified in tumour cells. Chromatin immunoprecipitation analysis demonstrated higher acetylation of H3K9ac and H3K14ac in HaCaT cells, which was related to higher mRNA levels. The presence of the mRNA variants suggests that alternative splicing may regulate the expression of galectin-9 isoforms. The results of this study suggest that histone acetylation, but not promoter CpG methylation, may be involved in the transcriptional regulation of the LGALS9 gene.


Assuntos
Galectinas/genética , Histonas/metabolismo , Regiões Promotoras Genéticas , Neoplasias do Colo do Útero/genética , Acetilação , Ilhas de CpG/genética , Metilação de DNA/genética , Feminino , Galectinas/metabolismo , Regulação Neoplásica da Expressão Gênica , Células HaCaT , Células HeLa , Humanos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...