Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 263(Pt 1): 130230, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38373564

RESUMO

Pectin is widely used in several products in the industry. Conventionally, strong and harmful acids are used for its extraction. This study optimized the extraction of orange peel's pectin using citric acid, considering yield and degree of esterification (DE) as response variables. Proximal analyses were performed, and the samples were subjected to a Box-Behnken design on three central points, considering as variables the temperature, time, and pH. The results of proximate analyses of the orange peels revealed 11.76 % moisture content, 87.26 % volatiles, 0.09 % ash, 50.45 % soluble carbohydrates, 70.60 % total carbohydrates, 0.89 % fixed carbon, 5.35 % lipids, and 36.75 mg GAE/g of phenolic compounds. The resulting second-order polynomial model described the relation of the input and output variables related to each other. The best performance to obtain a higher yield (18.18 %) of high methoxyl pectin (DE 50 %) was set at 100 °C/30 min/pH 2.48. Pectin showed antioxidant properties by ABTS and DPPH assays and similar thermal properties to the commercial polymer. Its equivalent weight was 1219.51 mol/g, and the methoxyl and anhydrouronic acid were 2.23 and 67.10 %, respectively. Hence, pectin extraction with citric acid results in a high-quality polymer and could be used as a gelling agent, stabilizer, or texturizer in food products.


Assuntos
Citrus sinensis , Pectinas , Pectinas/química , Citrus sinensis/química , Ácido Cítrico/química , Temperatura , Antioxidantes/farmacologia , Excipientes
2.
Mar Drugs ; 21(2)2023 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-36827134

RESUMO

Due to the constant growth of the human population and anthropological activity, it has become necessary to use sustainable and affordable technologies that satisfy the current and future demand for agricultural products. Since the nutrients available to plants in the soil are limited and the need to increase the yields of the crops is desirable, the use of chemical (inorganic or NPK) fertilizers has been widespread over the last decades, causing a nutrient shortage due to their misuse and exploitation, and because of the uncontrolled use of these products, there has been a latent environmental and health problem globally. For this reason, green biotechnology based on the use of microalgae biomass is proposed as a sustainable alternative for development and use as soil improvers for crop cultivation and phytoremediation. This review explores the long-term risks of using chemical fertilizers for both human health (cancer and hypoxia) and the environment (eutrophication and erosion), as well as the potential of microalgae biomass to substitute current fertilizer using different treatments on the biomass and their application methods for the implementation on the soil; additionally, the biomass can be a source of carbon mitigation and wastewater treatment in agro-industrial processes.


Assuntos
Microalgas , Solo , Humanos , Fertilizantes/análise , Pegada de Carbono , Carbono , Biotecnologia , Biomassa
3.
Molecules ; 27(18)2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-36144740

RESUMO

The photolyase family consists of flavoproteins with enzyme activity able to repair ultraviolet light radiation damage by photoreactivation. DNA damage by the formation of a cyclobutane pyrimidine dimer (CPD) and a pyrimidine-pyrimidone (6-4) photoproduct can lead to multiple affections such as cellular apoptosis and mutagenesis that can evolve into skin cancer. The development of integrated applications to prevent the negative effects of prolonged sunlight exposure, usually during outdoor activities, is imperative. This study presents the functions, characteristics, and types of photolyases, their therapeutic and cosmetic applications, and additionally explores some photolyase-producing microorganisms and drug delivery systems.


Assuntos
Desoxirribodipirimidina Fotoliase , Reparo do DNA , Desoxirribodipirimidina Fotoliase/genética , Desoxirribodipirimidina Fotoliase/metabolismo , Flavoproteínas , Dímeros de Pirimidina , Pirimidinas , Pirimidinonas , Raios Ultravioleta/efeitos adversos
4.
Molecules ; 27(11)2022 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-35684447

RESUMO

Microalgae are complex photosynthetic organisms found in marine and freshwater environments that produce valuable metabolites. Microalgae-derived metabolites have gained remarkable attention in different industrial biotechnological processes and pharmaceutical and cosmetic industries due to their multiple properties, including antioxidant, anti-aging, anti-cancer, phycoimmunomodulatory, anti-inflammatory, and antimicrobial activities. These properties are recognized as promising components for state-of-the-art cosmetics and cosmeceutical formulations. Efforts are being made to develop natural, non-toxic, and environmentally friendly products that replace synthetic products. This review summarizes some potential cosmeceutical applications of microalgae-derived biomolecules, their mechanisms of action, and extraction methods.


Assuntos
Produtos Biológicos , Cosmecêuticos , Cosméticos , Microalgas , Anti-Inflamatórios/metabolismo , Anti-Inflamatórios/farmacologia , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Produtos Biológicos/metabolismo , Produtos Biológicos/farmacologia , Biotecnologia , Cosmecêuticos/farmacologia , Cosméticos/metabolismo , Microalgas/metabolismo
5.
Polymers (Basel) ; 14(6)2022 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-35335534

RESUMO

Plastics have become an essential part of the modern world thanks to their appealing physical and chemical properties as well as their low production cost. The most common type of polymers used for plastic account for 90% of the total production and are made from petroleum-based nonrenewable resources. Concerns over the sustainability of the current production model and the environmental implications of traditional plastics have fueled the demand for greener formulations and alternatives. In the last decade, new plastics manufactured from renewable sources and biological processes have emerged from research and have been established as a commercially viable solution with less adverse effects. Nevertheless, economic and legislative challenges for biobased plastics hinder their widespread implementation. This review summarizes the history of plastics over the last century, including the most relevant bioplastics and production methods, the environmental impact and mitigation of the adverse effects of conventional and emerging plastics, and the regulatory landscape that renewable and recyclable bioplastics face to reach a sustainable future.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...