Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Vet Sci ; 8: 628445, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33748210

RESUMO

This review provides an update of ecologically relevant phytochemicals for ruminant production, focusing on their contribution to advancing nutrition. Phytochemicals embody a broad spectrum of chemical components that influence resource competence and biological advantage in determining plant species' distribution and density in different ecosystems. These natural compounds also often act as plant defensive chemicals against predatorial microbes, insects, and herbivores. They may modulate or exacerbate microbial transactions in the gastrointestinal tract and physiological responses in ruminant microbiomes. To harness their production-enhancing characteristics, phytochemicals have been actively researched as feed additives to manipulate ruminal fermentation and establish other phytochemoprophylactic (prevent animal diseases) and phytochemotherapeutic (treat animal diseases) roles. However, phytochemical-host interactions, the exact mechanism of action, and their effects require more profound elucidation to provide definitive recommendations for ruminant production. The majority of phytochemicals of nutritional and pharmacological interest are typically classified as flavonoids (9%), terpenoids (55%), and alkaloids (36%). Within flavonoids, polyphenolics (e.g., hydrolyzable and condensed tannins) have many benefits to ruminants, including reducing methane (CH4) emission, gastrointestinal nematode parasitism, and ruminal proteolysis. Within terpenoids, saponins and essential oils also mitigate CH4 emission, but triterpenoid saponins have rich biochemical structures with many clinical benefits in humans. The anti-methanogenic property in ruminants is variable because of the simultaneous targeting of several physiological pathways. This may explain saponin-containing forages' relative safety for long-term use and describe associated molecular interactions on all ruminant metabolism phases. Alkaloids are N-containing compounds with vast pharmacological properties currently used to treat humans, but their phytochemical usage as feed additives in ruminants has yet to be exploited as they may act as ghost compounds alongside other phytochemicals of known importance. We discussed strategic recommendations for phytochemicals to support sustainable ruminant production, such as replacements for antibiotics and anthelmintics. Topics that merit further examination are discussed and include the role of fresh forages vis-à-vis processed feeds in confined ruminant operations. Applications and benefits of phytochemicals to humankind are yet to be fully understood or utilized. Scientific explorations have provided promising results, pending thorough vetting before primetime use, such that academic and commercial interests in the technology are fully adopted.

2.
J Anim Sci Biotechnol ; 11: 80, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32832076

RESUMO

BACKGROUND: This study investigated changes in rumen protozoal and methanogenic communities, along with the correlations among microbial taxa and methane (CH4) production of six Belmont Red Composite beef steers fed tea seed saponins (TSS). Animals were fed in three consecutive feeding periods, a high-grain basal diet for 14 d (BD period) then a period of progressive addition of TSS to the basal diet up to 30 g/d for 20 d (TSS period), followed by the basal diet for 13 d without TSS (BDP post-control period). RESULTS: The study found that TSS supplementation decreased the amount of the protozoal genus Entodinium and increased Polyplastron and Eudiplodinium genera. During BDP period, the protozoa community of steers did not return to the protozoal profiles observed in BD period, with higher proportions of Metadinium and Eudiplodinium and lower Isotricha. The addition of TSS was found to change the structure of methanogen community at the sub-genus level by decreasing the abundance of methanogens in the SGMT clade and increasing the abundance of methanogens in the RO clade. The correlation analysis indicated that the abundance of SGMT clade methanogens were positively correlated with Isotricha, and Isotricha genus and SGMT clade methanogens were positively correlated with CH4 production. While RO clade were positively correlated with the proportion of Metadinium genus, which was negatively correlated with CH4 emission. CONCLUSIONS: These results suggest that different genera of rumen protozoa ciliates appear to be selectively inhibited by TSS, and the change in methanogen community at the subgenus level may be due to the mutualistic relationships between methanogens and rumen ciliates.

3.
J Sci Food Agric ; 97(12): 4075-4086, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28205235

RESUMO

BACKGROUND: In northern Australia, beef cattle grazed extensively on tropical rangelands are responsible for 5% of the nation's total greenhouse gas emissions. Methane (CH4 ) is a potent greenhouse gas and in grazing ruminants might be mitigated by selecting forages that, when consumed, produce less CH4 when fermented by rumen microbes. This study examined variability in the in vitro fermentation patterns, including CH4 production of selected tropical grasses and legumes, to identify candidates for CH4 mitigation in grazing livestock in northern Australia. RESULTS: Nutritive values and fermentation parameters varied between plant species and across seasons. Grasses with a relatively low methanogenic potential were Urochloa mosambicensis (wet summer), Bothriochloa decipiens (autumn), Sorghum plumosum (winter) and Andropogon gayanus (spring), while the legumes were Calliandra calothyrsus (wet summer and autumn), Stylosanthes scabra (winter) and Desmanthus leptophyllus (spring). There was some correlation between CH4 production and overall fermentation (volatile fatty acid concentrations) in grasses (R2 = 0.67), but not in legumes (R2 = 0.01) and there were multiple plants that had lower CH4 not associated with reduction in microbial activity. CONCLUSION: Differences in nutrient concentrations of tropical grasses and legumes may provide opportunities for productive grazing on these pastures, while offering some CH4 mitigation options in the context of northern Australian extensive beef farming systems. © 2017 Society of Chemical Industry.


Assuntos
Ração Animal/análise , Bovinos/metabolismo , Fabaceae/metabolismo , Poaceae/metabolismo , Animais , Austrália , Fabaceae/química , Metano/análise , Metano/metabolismo , Valor Nutritivo , Poaceae/química , Carne Vermelha/análise , Rúmen/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...