Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Insects ; 14(7)2023 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-37504658

RESUMO

Using light, transmission, scanning electron, and confocal microscopy, we carried out a morphological study of antennal sensilla and their ultrastructures of the Mexican Fruit Fly Anastrepha ludens (Loew), an economically important species that is a pest of mangos and citrus in Mexico and Central America. Our goal was to update the known information on the various sensilla in the antennae of A. ludens, involved in the perception of odors, temperature, humidity, and movement. Based on their external shape, size, cuticle-thickness, and presence of pores, we identified six types of sensilla with 16 subtypes (one chaetica in the pedicel, four clavate, two trichoid, four basiconic, one styloconic, and one campaniform-like in the flagellum, and three additional ones in the two chambers of the sensory pit (pit-basiconic I and II, and pit-styloconic)), some of them described for the first time in A. ludens. We also report, for the first time, two types of pores in the sensilla (hourglass and wedge shapes) that helped classify the sensilla. Additionally, we report a campaniform-like sensillum only observed by transmission electronic microscopy on the flagellum, styloconic and basiconic variants inside the sensory pit, and an "hourglass-shaped" pore in six sensilla types. We discuss and suggest the possible function of each sensillum according to their characteristics and unify previously used criteria in the only previous study on the topic.

2.
Chem Biodivers ; 20(6): e202300274, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37167583

RESUMO

The antifungal and insecticidal activities of 34 extracts from 27 plant species were evaluated against fungal phytopathogens of the genus Fusarium and Xyleborus Scolytine ambrosia beetles involved in Fusarium dieback (FD) and laurel wilt (LW) diseases. Sixteen extracts caused mycelial growth inhibition (MGI) above 23 % at 2 mg mL-1 against F. solani, those from S. nudum and M. argyrophylla exhibited the highest MGI (57 % and 49 %, respectively). Thirteen extracts displayed significant antifungal activity against F. kuroshium, those from C. nocturnum and M. argyrophylla exhibited the highest MGI (100 % and 54.9 %, respectively). Additionally, ten plants extracts caused mortality in at least one of the beetle species tested, mainly from Solanaceae species. In the most active species, 39 phenolics were identified that may have contributed to their biological effects. This study is one of the first to report the potential of plant-derived natural products against the causative agents of FD and LW.


Assuntos
Fusarium , Inseticidas , Persea , Animais , Inseticidas/farmacologia , Antifúngicos/farmacologia , Ambrosia , México , Doenças das Plantas/microbiologia , Florestas , Extratos Vegetais/farmacologia
3.
Front Microbiol ; 14: 1152597, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37206331

RESUMO

Avocado (Persea americana Mill.) is a tree crop of great social and economic importance. However, the crop productivity is hindered by fast-spreading diseases, which calls for the search of new biocontrol alternatives to mitigate the impact of avocado phytopathogens. Our objectives were to evaluate the antimicrobial activity of diffusible and volatile organic compounds (VOCs) produced by two avocado rhizobacteria (Bacillus A8a and HA) against phytopathogens Fusarium solani, Fusarium kuroshium, and Phytophthora cinnamomi, and assess their plant growth promoting effect in Arabidopsis thaliana. We found that, in vitro, VOCs emitted by both bacterial strains inhibited mycelial growth of the tested pathogens by at least 20%. Identification of bacterial VOCs by gas chromatography coupled to mass spectrometry (GC-MS) showed a predominance of ketones, alcohols and nitrogenous compounds, previously reported for their antimicrobial activity. Bacterial organic extracts obtained with ethyl acetate significantly reduced mycelial growth of F. solani, F. kuroshium, and P. cinnamomi, the highest inhibition being displayed by those from strain A8a (32, 77, and 100% inhibition, respectively). Tentative identifications carried out by liquid chromatography coupled to accurate mass spectrometry of diffusible metabolites in the bacterial extracts, evidenced the presence of some polyketides such as macrolactins and difficidin, hybrid peptides including bacillaene, and non-ribosomal peptides such as bacilysin, which have also been described in Bacillus spp. for antimicrobial activities. The plant growth regulator indole-3-acetic acid was also identified in the bacterial extracts. In vitro assays showed that VOCs from strain HA and diffusible compounds from strain A8a modified root development and increased fresh weight of A. thaliana. These compounds differentially activated several hormonal signaling pathways involved in development and defense responses in A. thaliana, such as auxin, jasmonic acid (JA) and salicylic acid (SA); genetic analyses suggested that developmental stimulation of the root system architecture by strain A8a was mediated by the auxin signaling pathway. Furthermore, both strains were able to enhance plant growth and decreased the symptoms of Fusarium wilt in A. thaliana when soil-inoculated. Collectively, our results evidence the potential of these two rhizobacterial strains and their metabolites as biocontrol agents of avocado pathogens and as biofertilizers.

4.
Int J Mol Sci ; 24(3)2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36768387

RESUMO

Anastrepha spp. (Diptera: Tephritidae) infestations cause significant economic losses in commercial fruit production worldwide. However, some plants quickly counteract the insertion of eggs by females by generating neoplasia and hindering eclosion, as is the case for Persea americana Mill., cv. Hass (Hass avocados). We followed a combined transcriptomics/metabolomics approach to identify the molecular mechanisms triggered by Hass avocados to detect and react to the oviposition of the pestiferous Anastrepha ludens (Loew). We evaluated two conditions: fruit damaged using a sterile pin (pin) and fruit oviposited by A. ludens females (ovi). We evaluated both of the conditions in a time course experiment covering five sampling points: without treatment (day 0), 20 min after the treatment (day 1), and days 3, 6, and 9 after the treatment. We identified 288 differentially expressed genes related to the treatments. Oviposition (and possibly bacteria on the eggs' surface) induces a plant hypersensitive response (HR), triggering a chitin receptor, producing an oxidative burst, and synthesizing phytoalexins. We also observed a process of cell wall modification and polyphenols biosynthesis, which could lead to polymerization in the neoplastic tissue surrounding the eggs.


Assuntos
Magnoliopsida , Persea , Tephritidae , Animais , Feminino , Oviposição , Tephritidae/genética , Frutas
5.
Chem Biodivers ; 19(11): e202200687, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36149759

RESUMO

Antimicrobial compounds produced by bacteria have been increasingly acknowledged as an important resource for the control of phytopathogens. We used a bioassay-guided fractionation approach to identify antifungal metabolites produced by two avocado rhizobacteria (INECOL-4742 and INECOL-5927), both members of the Bacillus subtilis/B. amyloliquefaciens species complex, against Fusarium solani and F. kuroshium, causal agent of Fusarium dieback in avocado and other hosts. The butanol (BuOH) organic extract from INECOL-4742 (B1-Bu) exhibited the highest percentage of inhibition (PI) against F. solani (78.76 %), also inhibiting F. kuroshium by up to 44.30 %. Primary fractions, Bu-F3, Bu-F12 and Bu-F15, obtained by silica gel open column chromatography, exhibited the highest PI against F. solani (28.57 % to 33.50 %) and F. kuroshium (38.78 % to 45.00 %). The presence of cyclic lipopeptides from the iturin, surfactin and fengycin families in B1-Bu extracts and primary fractions was determined by UPLC-ESI-HRMS. The Confocal Laser Microscopy analysis revealed deformations in the hyphae of F. kuroshium exposed to extracts, primary fractions and C-13 surfactin chemical standard. These results emphasize the potential of natural products from Bacillus for the control of the emerging phytopathogenic fungus F. kuroshium.


Assuntos
Bacillus , Produtos Biológicos , Fusarium , Persea , Humanos , Fusarium/metabolismo , Antifúngicos/farmacologia , Antifúngicos/metabolismo , Lipopeptídeos/farmacologia , Lipopeptídeos/análise , Lipopeptídeos/metabolismo , Produtos Biológicos/metabolismo , Bioensaio , Doenças das Plantas/microbiologia
6.
Molecules ; 27(6)2022 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-35335224

RESUMO

Antifungal assay-guided fractionation of the methanolic crude extract of Cestrum nocturnum (Solanaceae), popular known as 'lady of the night', led the isolation and identification of the steroidal saponin named pennogenin tetraglycoside, which was identified for the first time in this plant species by spectroscopic means. The crude extract, fractions and pennogenin tetraglycoside exhibited mycelial growth inhibition of Fusarium solani and F. kuroshium. F. solani is a cosmopolitan fungal phytopathogen that affects several economically important crops. However, we highlight the antifungal activity displayed by pennogenin tetraglycoside against F. kuroshium, since it is the first plant natural product identified as active for this phytopathogen. This fungus along with its insect symbiont known as Kuroshio shot hole borer (Euwallacea kuroshio) are the causal agents of the plant disease Fusarium dieback that affects more than 300 plant species including avocado (Persea americana) among others of ecological relevance. Scanning electron microscopy showed morphological alterations of the fungal hyphae after exposure with the active fractions and 12 phenolic compounds were also identified by mass spectrometry dereplication as part of potential active molecules present in C. nocturnum leaves.


Assuntos
Cestrum , Fusarium , Solanaceae , Antifúngicos/química , Humanos , Espirostanos
7.
Int J Mol Sci ; 21(21)2020 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-33138264

RESUMO

Anastrepha ludens is a key pest of mangoes and citrus from Texas to Costa Rica but the mechanisms of odorant perception in this species are poorly understood. Detection of volatiles in insects occurs mainly in the antenna, where molecules penetrate sensillum pores and link to soluble proteins in the hemolymph until reaching specific odor receptors that trigger signal transduction and lead to behavioral responses. Scrutinizing the molecular foundation of odorant perception in A. ludens is necessary to improve biorational management strategies against this pest. After exposing adults of three maturity stages to a proteinaceous attractant, we studied antennal morphology and comparative proteomic profiles using nano-LC-MS/MS with tandem mass tags combined with synchronous precursor selection (SPS)-MS3. Antennas from newly emerged flies exhibited dense agglomerations of olfactory sensory neurons. We discovered 4618 unique proteins in the antennas of A. ludens and identified some associated with odor signaling, including odorant-binding and calcium signaling related proteins, the odorant receptor co-receptor (Orco), and putative odorant-degrading enzymes. Antennas of sexually immature flies exhibited the most upregulation of odor perception proteins compared to mature flies exposed to the attractant. This is the first report where critical molecular players are linked to the odor perception mechanism of A. ludens.


Assuntos
Frutas/química , Feromônios/farmacologia , Proteoma/análise , Proteoma/metabolismo , Tephritidae/metabolismo , Animais , Tephritidae/efeitos dos fármacos
8.
Int J Mol Sci ; 21(16)2020 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-32784357

RESUMO

Somatic embryogenesis (SE) is a valuable model for understanding the mechanism of plant embryogenesis and a tool for the mass production of plants. However, establishing SE in avocado has been complicated due to the very low efficiency of embryo induction and plant regeneration. To understand the molecular foundation of the SE induction and development in avocado, we compared embryogenic (EC) and non-embryogenic (NEC) cultures of two avocado varieties using proteomic and metabolomic approaches. Although Criollo and Hass EC exhibited similarities in the proteome and metabolome profile, in general, we observed a more active phenylpropanoid pathway in EC than NEC. This pathway is associated with the tolerance of stress responses, probably through the reinforcement of the cell wall and flavonoid production. We could corroborate that particular polyphenolics compounds, including p-coumaric acid and t-ferulic acid, stimulated the production of somatic embryos in avocado. Exogen phenolic compounds were associated with the modification of the content of endogenous polyphenolic and the induction of the production of the putative auxin-a, adenosine, cellulose and 1,26-hexacosanediol-diferulate. We suggest that in EC of avocado, there is an enhanced phenylpropanoid metabolism for the production of the building blocks of lignin and flavonoid compounds having a role in cell wall reinforcement for tolerating stress response. Data are available at ProteomeXchange with the identifier PXD019705.


Assuntos
Adaptação Fisiológica , Parede Celular/metabolismo , Persea/embriologia , Persea/fisiologia , Técnicas de Embriogênese Somática de Plantas , Propanóis/metabolismo , Estresse Fisiológico , Parede Celular/ultraestrutura , Metabolômica , Modelos Biológicos , Persea/ultraestrutura , Fenótipo , Proteínas de Plantas/metabolismo , Polifenóis/metabolismo , Análise de Componente Principal , Proteômica
9.
Braz J Microbiol ; 51(3): 861-873, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32166656

RESUMO

Rhizobacteria emit bioactive metabolites with antifungal properties that could be used for biocontrol of fungal diseases. In this study, we evaluated the potential of diffusible and volatile organic compounds (VOCs) emitted by avocado rhizobacteria to inhibit the growth of Fusarium kuroshium, one of the causal agents of Fusarium dieback (FD) in avocado. Three bacterial isolates (INECOL-6004, INECOL-6005, and INECOL-6006), belonging to the Bacillus genus, were selected based on their capacity to inhibit several avocado fungal pathogens, and tested in antagonism assays against F. kuroshium. The three bacterial isolates significantly inhibited F. kuroshium mycelial growth by up to 48%. The composition of bacterial diffusible compounds was characterized by the analysis of EtOAc and n-BuOH extracts by using ultra-performance liquid chromatography (UPLC) coupled to high-resolution mass spectrometry (HRMS). The three bacterial isolates produced cyclo-lipopeptides belonging to the iturin, fengycin, and surfactin families. The antifungal activity of n-BuOH extracts was larger than that of EtOAc extracts, probably due to the greater relative abundance of fengycin in the former than in the latter. In addition, isolates INECOL-6004 and INECOL-6006 significantly inhibited F. kuroshium mycelial growth through VOC emission by up to 69.88%. The analysis of their VOC profiles by solid phase micro-extraction (SPME) coupled to gas chromatography and mass spectrometry (GC-MS) revealed the presence of ketones and pyrazine compounds, particularly of 2-nonanone, which was not detected in the VOC profile of isolate INECOL-6005. These results emphasize the need to further investigate the antifungal activity of each bioactive compound for the development of new formulations against fungal phytopathogens.


Assuntos
Antifúngicos/farmacologia , Fusarium/efeitos dos fármacos , Persea/microbiologia , Compostos Orgânicos Voláteis/farmacologia , Antibiose , Antifúngicos/química , Antifúngicos/metabolismo , Bacillus/isolamento & purificação , Bacillus/metabolismo , Fusarium/crescimento & desenvolvimento , Lipopeptídeos/química , Lipopeptídeos/metabolismo , Lipopeptídeos/farmacologia , Micélio/efeitos dos fármacos , Micélio/crescimento & desenvolvimento , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Microbiologia do Solo , Compostos Orgânicos Voláteis/química , Compostos Orgânicos Voláteis/metabolismo
10.
Microbiol Res ; 235: 126440, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32109690

RESUMO

Although the use of crop-associated bacteria as biological control agents of fungal diseases has gained increasing interest, the biotechnological potential of forest tree-associated microbes and their natural products has scarcely been investigated. The objective of this study was to identify bacteria or bacterial products with antagonistic activity against Fusarium solani and Fusarium kuroshium, causal agent of Fusarium dieback, by screening the rhizosphere and phyllosphere of three Lauraceae species. From 195 bacterial isolates, we identified 32 isolates that significantly reduced the growth of F. solani in vitro, which mostly belonged to bacterial taxa Bacillus, Pseudomonas and Actinobacteria. The antifungal activity of their volatile organic compounds (VOCs) was also evaluated. Bacterial strain Bacillus sp. CCeRi1-002, recovered from the rhizosphere of Aiouea effusa, showed the highest percentage of direct inhibition (62.5 %) of F. solani and produced diffusible compounds that significantly reduced its mycelial growth. HPLC-MS analyses on this strain allowed to tentatively identify bioactive compounds from three lipopeptide groups (iturin, surfactin and fengycin). Bacillus sp. CCeRi1-002 and another strain identified as Pseudomonas sp. significantly inhibited F. solani mycelial growth through the emission of VOCs. Chemical analysis of their volatile profiles indicated the likely presence of 2-nonanone, 2-undecanone, disulfide dimethyl and 1-butanol 3-methyl-, which had been previously reported with antifungal activity. In antagonism assays against F. kuroshium, Bacillus sp. CCeRi1-002 and its diffusible compounds exhibited significant antifungal activity and induced hyphal deformations. Our findings highlight the importance of considering bacteria associated with forest species and the need to include bacterial products in the search for potential antagonists of Fusarium dieback.


Assuntos
Antibiose , Antifúngicos/farmacologia , Bactérias/química , Agentes de Controle Biológico/química , Fusarium/patogenicidade , Doenças das Plantas/prevenção & controle , Árvores/microbiologia , Florestas , Doenças das Plantas/microbiologia , Raízes de Plantas/microbiologia , RNA Ribossômico 16S , Rizosfera , Compostos Orgânicos Voláteis/química
11.
Microbiol Res ; 219: 74-83, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30642469

RESUMO

Recent studies showed that bacterial volatile organic compounds (VOCs) play an important role in the suppression of phytopathogens. The ability of VOCs produced by avocado (Persea americana Mill.) rhizobacteria to suppress the growth of common avocado pathogens was therefore investigated. We evaluated the antifungal activity of VOCs emitted by avocado rhizobacteria in a first screening against Fusarium solani, and in subsequent antagonism assays against Fusarium sp. associated with Kuroshio shot hole borer, Colletotrichum gloeosporioides and Phytophthora cinnamomi, responsible for Fusarium dieback, anthracnosis and Phytophthora root rot in avocado, respectively. We also analyzed the composition of the bacterial volatile profiles by solid phase microextraction (SPME) gas chromatography coupled to mass spectrometry (GC-MS). Seven isolates, belonging to the bacterial genera Bacillus and Pseudomonas, reduced the mycelial growth of F. solani with inhibition percentages higher than 20%. Isolate HA, related to Bacillus amyloliquefaciens, significantly reduced the mycelial growth of Fusarium sp. and C. gloeosporioides and the mycelium density of P. cinnamomi. Isolates SO and SJJ, also members of the genus Bacillus, reduced Fusarium sp. mycelial growth and induced morphological alterations of fungal hyphae whilst isolate HB, close to B. mycoides, inhibited C. gloeosporioides. The analysis of the volatile profiles revealed the presence of ketones, pyrazines and sulfur-containing compounds, previously reported with antifungal activity. Altogether, our results support the potential of avocado rhizobacteria to act as biocontrol agents of avocado fungal pathogens and emphasize the importance of Bacillus spp. for the control of emerging avocado diseases such as Fusarium dieback.


Assuntos
Antifúngicos/farmacologia , Bacillus/metabolismo , Agentes de Controle Biológico/farmacologia , Colletotrichum/efeitos dos fármacos , Fusarium/efeitos dos fármacos , Persea/microbiologia , Phytophthora/efeitos dos fármacos , Pseudomonas/metabolismo , Compostos Orgânicos Voláteis/farmacologia , Animais , Antifúngicos/metabolismo , Agentes de Controle Biológico/metabolismo , Besouros/microbiologia , Compostos Orgânicos Voláteis/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...