Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Physiol ; 11: 566, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32655401

RESUMO

RATIONALE: Precision-cut lung slices (PCLSs) are a valuable tool in studying tissue responses to an acute exposure; however, cyclic stretching may be necessary to recapitulate physiologic, tidal breathing conditions. OBJECTIVES: To develop a multi-well stretcher and characterize the PCLS response following acute exposure to cigarette smoke extract (CSE). METHODS: A 12-well stretching device was designed, built, and calibrated. PCLS were obtained from male Sprague-Dawley rats (N = 10) and assigned to one of three groups: 0% (unstretched), 5% peak-to-peak amplitude (low-stretch), and 5% peak-to-peak amplitude superimposed on 10% static stretch (high-stretch). Lung slices were cyclically stretched for 12 h with or without CSE in the media. Levels of Interleukin-1ß (IL-1ß), matrix metalloproteinase (MMP)-1 and its tissue inhibitor (TIMP1), and membrane type-MMP (MT1-MMP) were assessed via western blot from tissue homogenate. RESULTS: The stretcher system produced nearly identical normal Lagrangian strains (E xx and E yy , p > 0.999) with negligible shear strain (E xy < 0.0005) and low intra-well variability 0.127 ± 0.073%. CSE dose response curve was well characterized by a four-parameter logistic model (R 2 = 0.893), yielding an IC50 value of 0.018 cig/mL. Cyclic stretching for 12 h did not decrease PCLS viability. Two-way ANOVA detected a significant interaction between CSE and stretch pattern for IL-1ß (p = 0.017), MMP-1, TIMP1, and MT1-MMP (p < 0.001). CONCLUSION: This platform is capable of high-throughput testing of an acute exposure under tightly-regulated, cyclic stretching conditions. We conclude that the acute mechano-inflammatory response to CSE exhibits complex, stretch-dependence in the PCLS.

2.
Genome Med ; 12(1): 64, 2020 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-32690065

RESUMO

BACKGROUND: A challenge in the post-GWAS era is to assign function to disease-associated variants. However, available resources do not include all tissues or environmental exposures that are relevant to all diseases. For example, exaggerated bronchoconstriction of airway smooth muscle cells (ASMCs) defines airway hyperresponsiveness (AHR), a cardinal feature of asthma. However, the contribution of ASMC to genetic and genomic studies has largely been overlooked. Our study aimed to address the gap in data availability from a critical tissue in genomic studies of asthma. METHODS: We developed a cell model of AHR to discover variants associated with transcriptional, epigenetic, and cellular responses to two AHR promoting cytokines, IL-13 and IL-17A, and performed a GWAS of bronchial responsiveness (BRI) in humans. RESULTS: Our study revealed significant response differences between ASMCs from asthma cases and controls, including genes implicated in asthma susceptibility. We defined molecular quantitative trait loci (QTLs) for expression (eQTLs) and methylation (meQTLs), and cellular QTLs for contractility (coQTLs) and performed a GWAS of BRI in human subjects. Variants in asthma GWAS were significantly enriched for ASM QTLs and BRI-associated SNPs, and near genes enriched for ASM function, many with small P values that did not reach stringent thresholds of significance in GWAS. CONCLUSIONS: Our study identified significant differences between ASMCs from asthma cases and controls, potentially reflecting trained tolerance in these cells, as well as a set of variants, overlooked in previous GWAS, which reflect the AHR component of asthma.


Assuntos
Asma/etiologia , Asma/metabolismo , Citocinas/genética , Miócitos de Músculo Liso/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Asma/patologia , Biomarcadores , Hiper-Reatividade Brônquica/etiologia , Hiper-Reatividade Brônquica/metabolismo , Citocinas/metabolismo , Metilação de DNA , Suscetibilidade a Doenças , Feminino , Regulação da Expressão Gênica , Estudo de Associação Genômica Ampla , Humanos , Masculino , Pessoa de Meia-Idade , Fenótipo , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Fatores de Risco , Adulto Jovem
3.
Front Pharmacol ; 11: 469, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32435188

RESUMO

Despite maximal use of currently available therapies, a significant number of asthma patients continue to experience severe, and sometimes life-threatening bronchoconstriction. To fill this therapeutic gap, we examined a potential role for the 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMGCR) inhibitor, pitavastatin. Using human airway smooth muscle (ASM) cells and murine precision-cut lung slices, we discovered that pitavastatin significantly inhibited basal-, histamine-, and methacholine (MCh)-induced ASM contraction. This occurred via reduction of myosin light chain 2 (MLC2) phosphorylation, and F-actin stress fiber density and distribution, in a mevalonate (MA)- and geranylgeranyl pyrophosphate (GGPP)-dependent manner. Pitavastatin also potentiated the ASM relaxing effect of a simulated deep breath, a beneficial effect that is notably absent with the ß2-agonist, isoproterenol. Finally, pitavastatin attenuated ASM pro-inflammatory cytokine production in a GGPP-dependent manner. By targeting all three hallmark features of ASM dysfunction in asthma-contraction, failure to adequately relax in response to a deep breath, and inflammation-pitavastatin may represent a unique asthma therapeutic.

4.
Sci Rep ; 10(1): 6480, 2020 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-32296115

RESUMO

Precision-cut lung slices (PCLS) are ideal for measuring small airway contraction. However, these measurements are currently limited to acute exposure scenarios that typically last a few minutes to a few hours. Using an insulin-supplemented culture medium, we prolong the small airway contractility in mouse PCLS for up to two weeks. Compared to conventional culture medium, insulin-supplemented culture medium provides no additional benefit in preserving cellular viability or airway structure. However, it protects the airway smooth muscle (ASM) against a loss of smooth muscle myosin heavy chain (SMMHC) expression. We elucidate the significance of this new culture medium for chronic disease modeling of IL-13-induced airway hyper-responsiveness.


Assuntos
Pulmão/fisiopatologia , Contração Muscular/fisiologia , Músculo Liso/fisiologia , Hipersensibilidade Respiratória/imunologia , Técnicas de Cultura de Tecidos/métodos , Animais , Meios de Cultura/metabolismo , Feminino , Humanos , Insulina/metabolismo , Interleucina-13/imunologia , Interleucina-13/metabolismo , Pulmão/imunologia , Masculino , Camundongos , Músculo Liso/citologia , Miócitos de Músculo Liso/metabolismo , Cadeias Pesadas de Miosina/metabolismo , Hipersensibilidade Respiratória/fisiopatologia
5.
Am J Physiol Lung Cell Mol Physiol ; 318(2): L323-L330, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31774304

RESUMO

In asthma, acute bronchospasm is driven by contractile forces of airway smooth muscle (ASM). These forces can be imaged in the cultured ASM cell or assessed in the muscle strip and the tracheal/bronchial ring, but in each case, the ASM is studied in isolation from the native airway milieu. Here, we introduce a novel platform called tissue traction microscopy (TTM) to measure ASM contractile force within porcine and human precision-cut lung slices (PCLS). Compared with the conventional measurements of lumen area changes in PCLS, TTM measurements of ASM force changes are 1) more sensitive to bronchoconstrictor stimuli, 2) less variable across airways, and 3) provide spatial information. Notably, within every human airway, TTM measurements revealed local regions of high ASM contraction that we call "stress hotspots". As an acute response to cyclic stretch, these hotspots promptly decreased but eventually recovered in magnitude, spatial location, and orientation, consistent with local ASM fluidization and resolidification. By enabling direct and precise measurements of ASM force, TTM should accelerate preclinical studies of airway reactivity.


Assuntos
Pulmão/fisiologia , Microscopia , Contração Muscular/fisiologia , Tração , Animais , Animais Recém-Nascidos , Fenômenos Biomecânicos , Broncoconstrição/fisiologia , Humanos , Músculo Liso/fisiologia , Estresse Mecânico , Suínos
6.
Immunohorizons ; 3(8): 368-377, 2019 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-31603851

RESUMO

The hallmark features of allergic asthma are type 2 (eosinophilic) inflammation and airways hyperresponsiveness (AHR). Although these features often comanifest in mouse lungs in vivo, we demonstrate in this study that the serine protease Alp1 from the ubiquitous mold and allergen, Aspergillus fumigatus, can induce AHR in mice unable to generate eosinophilic inflammation. Strikingly, Alp1 induced AHR in mice devoid of protease-activated receptor 2/F2 trypsin-like receptor 1 (PAR2/F2RL1), a receptor expressed in lung epithelium that is critical for allergic responses to protease-containing allergens. Instead, using precision-cut lung slices and human airway smooth muscle cells, we demonstrate that Alp1 directly increased contractile force. Taken together, these findings suggest that Alp1 induces bronchoconstriction through mechanisms that are largely independent of allergic inflammation and point to a new target for direct intervention of fungal-associated asthma.


Assuntos
Aspergillus fumigatus/imunologia , Asma/imunologia , Asma/microbiologia , Proteínas Fúngicas/imunologia , Serina Endopeptidases/imunologia , Alérgenos/imunologia , Animais , Aspergillus fumigatus/enzimologia , Líquido da Lavagem Broncoalveolar/citologia , Líquido da Lavagem Broncoalveolar/imunologia , Broncoconstrição/efeitos dos fármacos , Broncoconstrição/imunologia , Células Cultivadas , Modelos Animais de Doenças , Técnicas de Inativação de Genes , Humanos , Inflamação/imunologia , Pulmão/patologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Miócitos de Músculo Liso/imunologia , Receptor PAR-2/genética , Receptor PAR-2/imunologia
7.
JCI Insight ; 3(16)2018 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-30135301

RESUMO

Airway smooth muscle (ASM) is a dynamic and complex tissue involved in regulation of bronchomotor tone, but the molecular events essential for the maintenance of ASM homeostasis are not well understood. Observational and genome-wide association studies in humans have linked airway function to the nutritional status of vitamin A and its bioactive metabolite retinoic acid (RA). Here, we provide evidence that ongoing RA signaling is critical for the regulation of adult ASM phenotype. By using dietary, pharmacologic, and genetic models in mice and humans, we show that (a) RA signaling is active in adult ASM in the normal lung, (b) RA-deficient ASM cells are hypertrophic, hypercontractile, profibrotic, but not hyperproliferative, (c) TGF-ß signaling, known to cause ASM hypertrophy and airway fibrosis in human obstructive lung diseases, is hyperactivated in RA-deficient ASM, (d) pharmacologic and genetic inhibition of the TGF-ß activity in ASM prevents the development of the aberrant phenotype induced by RA deficiency, and (e) the consequences of transient RA deficiency in ASM are long-lasting. These results indicate that RA signaling actively maintains adult ASM homeostasis, and disruption of RA signaling leads to aberrant ASM phenotypes similar to those seen in human chronic airway diseases such as asthma.


Assuntos
Pneumopatias Obstrutivas/patologia , Pulmão/patologia , Músculo Liso/patologia , Receptores do Ácido Retinoico/metabolismo , Tretinoína/metabolismo , Adulto , Animais , Benzoatos/farmacologia , Células Cultivadas , Modelos Animais de Doenças , Feminino , Fibrose , Humanos , Hipertrofia/patologia , Pulmão/citologia , Pulmão/metabolismo , Pneumopatias Obstrutivas/etiologia , Masculino , Camundongos , Camundongos Transgênicos , Músculo Liso/citologia , Músculo Liso/metabolismo , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/metabolismo , Cultura Primária de Células , Receptores do Ácido Retinoico/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Estilbenos/farmacologia , Tretinoína/administração & dosagem
8.
Toxicol Sci ; 150(1): 225-33, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26719368

RESUMO

To assess chemical toxicity, current high throughput screening (HTS) assays rely primarily on in vitro measurements using cultured cells. Responses frequently differ from in vivo results due to the lack of physical and humoral interactions provided by the extracellular matrix, cell-cell interactions, and other molecular components of the native organ. To more accurately reproduce organ complexity in HTS, we developed an organotypic assay using the cryopreserved precision cut lung slice (PCLS) from rats and mice. Compared to the never-frozen PCLS, their frozen-thawed counterpart slices showed viability or metabolic activity that is decreased to an extent comparable to that observed in other cryopreserved cells and tissues, but shows no differences in further changes in cell viability, mitochondrial integrity, and glutathione activity in response to the model toxin zinc chloride (ZnCl2). Notably, these measurements were successfully miniaturized so as to establish HTS capacity in a 96-well plate format. Finally, PCLS responses correlated with common markers of lung injury measured in lavage fluid from rats intratracheally instilled with ZnCl2. In summary, we establish that the cryopreserved PCLS is a feasible approach for HTS investigations in predictive toxicology.


Assuntos
Criopreservação , Pulmão/efeitos dos fármacos , Testes de Toxicidade/métodos , Animais , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Cloretos/toxicidade , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Humanos , Técnicas In Vitro , Pulmão/citologia , Pulmão/metabolismo , Masculino , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Monócitos/efeitos dos fármacos , Monócitos/metabolismo , Especificidade de Órgãos , Estresse Oxidativo/efeitos dos fármacos , Cultura Primária de Células , Ratos Wistar , Compostos de Zinco/toxicidade
9.
Am J Respir Cell Mol Biol ; 50(5): 876-81, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24313705

RESUMO

An emerging tool in airway biology is the precision-cut lung slice (PCLS). Adoption of the PCLS as a model for assessing airway reactivity has been hampered by the limited time window within which tissues remain viable. Here we demonstrate that the PCLS can be frozen, stored long-term, and then thawed for later experimental use. Compared with the never-frozen murine PCLS, the frozen-thawed PCLS shows metabolic activity that is decreased to an extent comparable to that observed in other cryopreserved tissues but shows no differences in cell viability or in airway caliber responses to the contractile agonist methacholine or the relaxing agonist chloroquine. These results indicate that freezing and long-term storage is a feasible solution to the problem of limited viability of the PCLS in culture.


Assuntos
Pulmão/fisiologia , Contração Muscular/fisiologia , Animais , Morte Celular/fisiologia , Sobrevivência Celular/fisiologia , Criopreservação/métodos , Congelamento , Camundongos , Camundongos Endogâmicos C57BL
10.
FASEB J ; 28(2): 897-907, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24221086

RESUMO

Children who are exposed to environmental respiratory insults often develop asthma that persists into adulthood. In this study, we used a neonatal mouse model of ovalbumin (OVA)-induced allergic airway inflammation to understand the long-term effects of early childhood insults on airway structure and function. We showed that OVA sensitization and challenge in early life led to a 2-fold increase in airway smooth muscle (ASM) innervation (P<0.05) and persistent airway hyperreactivity (AHR). In contrast, OVA exposure in adult life elicited short-term AHR without affecting innervation levels. We found that postnatal ASM innervation required neurotrophin (NT)-4 signaling through the TrkB receptor and that early-life OVA exposure significantly elevated NT4 levels and TrkB signaling by 5- and 2-fold, respectively, to increase innervation. Notably, blockade of NT4/TrkB signaling in OVA-exposed pups prevented both acute and persistent AHR without affecting baseline airway function or inflammation. Furthermore, biophysical assays using lung slices and isolated cells demonstrated that NT4 was necessary for hyperreactivity of ASM induced by early-life OVA exposure. Together, our findings show that the NT4/TrkB-dependent increase in innervation plays a critical role in the alteration of the ASM phenotype during postnatal growth, thereby linking early-life allergen exposure to persistent airway dysfunction.


Assuntos
Músculo Liso/metabolismo , Fatores de Crescimento Neural/metabolismo , Receptor trkB/metabolismo , Alérgenos/imunologia , Animais , Asma , Western Blotting , Modelos Animais de Doenças , Ensaio de Imunoadsorção Enzimática , Camundongos , Microscopia Confocal , Músculo Liso/efeitos dos fármacos , Fatores de Crescimento Neural/genética , Ovalbumina/imunologia , Receptor trkB/genética
11.
PLoS One ; 8(9): e74469, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24040256

RESUMO

Phenotypes of lung smooth muscle cells in health and disease are poorly characterized. This is due, in part, to a lack of methodologies that allow for the independent and direct isolation of bronchial smooth muscle cells (BSMCs) and vascular smooth muscle cells (VSMCs) from the lung. In this paper, we describe the development of a bi-fluorescent mouse that permits purification of these two cell populations by cell sorting. By subjecting this mouse to an acute allergen based-model of airway inflammation that exhibits many features of asthma, we utilized this tool to characterize the phenotype of so-called asthmatic BSMCs. First, we examined the biophysical properties of single BSMCs from allergen sensitized mice and found increases in basal tone and cell size that were sustained ex vivo. We then generated for the first time, a comprehensive characterization of the global gene expression changes in BSMCs isolated from the bi-fluorescent mice with allergic airway inflammation. Using statistical methods and pathway analysis, we identified a number of differentially expressed mRNAs in BSMCs from allergen sensitized mice that code for key candidate proteins underlying changes in matrix formation, contractility, and immune responses. Ultimately, this tool will provide direction and guidance for the logical development of new markers and approaches for studying human lung smooth muscle.


Assuntos
Asma/genética , Brônquios/metabolismo , Hiper-Reatividade Brônquica/genética , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Fenótipo , Proteoma/imunologia , Alérgenos/imunologia , Animais , Asma/imunologia , Asma/patologia , Brônquios/imunologia , Brônquios/patologia , Hiper-Reatividade Brônquica/imunologia , Hiper-Reatividade Brônquica/patologia , Tamanho Celular , Modelos Animais de Doenças , Fluorescência , Expressão Gênica , Perfilação da Expressão Gênica , Humanos , Imunização , Inflamação/genética , Inflamação/imunologia , Inflamação/patologia , Camundongos , Camundongos Transgênicos , Músculo Liso Vascular/imunologia , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/imunologia , Miócitos de Músculo Liso/patologia , Ovalbumina/imunologia , Proteoma/genética , RNA Mensageiro/genética , RNA Mensageiro/imunologia , Análise de Célula Única
12.
PLoS One ; 8(1): e53430, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23308222

RESUMO

Smooth muscle contraction is a dynamic process driven by acto-myosin interactions that are controlled by multiple regulatory proteins. Our studies have shown that members of the AP-1 transcription factor family control discrete behaviors of smooth muscle cells (SMC) such as growth, migration and fibrosis. However, the role of AP-1 in regulation of smooth muscle contractility is incompletely understood. In this study we show that the AP-1 family member JunB regulates contractility in visceral SMC by altering actin polymerization and myosin light chain phosphorylation. JunB levels are robustly upregulated downstream of transforming growth factor beta-1 (TGFß1), a known inducer of SMC contractility. RNAi-mediated silencing of JunB in primary human bladder SMC (pBSMC) inhibited cell contractility under both basal and TGFß1-stimulated conditions, as determined using gel contraction and traction force microscopy assays. JunB knockdown did not alter expression of the contractile proteins α-SMA, calponin or SM22α. However, JunB silencing decreased levels of Rho kinase (ROCK) and myosin light chain (MLC20). Moreover, JunB silencing attenuated phosphorylation of the MLC20 regulatory phosphatase subunit MYPT1 and the actin severing protein cofilin. Consistent with these changes, cells in which JunB was knocked down showed a reduction in the F:G actin ratio in response to TGFß1. Together these findings demonstrate a novel function for JunB in regulating visceral smooth muscle cell contractility through effects on both myosin and the actin cytoskeleton.


Assuntos
Citoesqueleto de Actina/efeitos dos fármacos , Actinas/genética , Miócitos de Músculo Liso/efeitos dos fármacos , Fatores de Transcrição/genética , Fator de Crescimento Transformador beta1/farmacologia , Fatores de Despolimerização de Actina/genética , Fatores de Despolimerização de Actina/metabolismo , Actinas/metabolismo , Animais , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/metabolismo , Contração Muscular/efeitos dos fármacos , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Miócitos de Músculo Liso/citologia , Miócitos de Músculo Liso/metabolismo , Cadeias Leves de Miosina/genética , Cadeias Leves de Miosina/metabolismo , Fosfatase de Miosina-de-Cadeia-Leve/genética , Fosfatase de Miosina-de-Cadeia-Leve/metabolismo , Fosforilação/efeitos dos fármacos , Polimerização/efeitos dos fármacos , Cultura Primária de Células , RNA Interferente Pequeno/genética , Ratos , Transdução de Sinais/efeitos dos fármacos , Fatores de Transcrição/antagonistas & inibidores , Fatores de Transcrição/metabolismo , Bexiga Urinária/citologia , Bexiga Urinária/efeitos dos fármacos , Bexiga Urinária/metabolismo , Quinases Associadas a rho/genética , Quinases Associadas a rho/metabolismo , Calponinas
13.
Cancer Res ; 65(8): 3155-61, 2005 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-15833845

RESUMO

Because they are long-lived and cycle continuously, adult stem cells (ASCs) are predicted as the most common precursor for cancers in adult mammalian tissues. Two unique attributes have been proposed to restrict the carcinogenic potential of ASCs. These are asymmetric self-renewal that limits their number and immortal DNA strand cosegregation that limits their accumulation of mutations due to DNA replication errors. Until recently, the molecular basis and regulation of these important ASC-specific functions were unknown. We developed engineered cultured cells that exhibit asymmetric self-renewal and immortal DNA strand cosegregation. These model cells were used to show that both ASC-specific functions are regulated by the p53 cancer gene. Previously, we proposed that IMP dehydrogenase (IMPDH) was an essential factor for p53-dependent asymmetric self-renewal. We now confirm this proposal and provide quantitative evidence that asymmetric self-renewal is acutely sensitive to even modest changes in IMPDH expression. These analyses reveal that immortal DNA strand cosegregation is also regulated by IMPDH and confirm the original implicit precept that immortal DNA strand cosegregation is specific to cells undergoing asymmetric self-renewal (i.e., ASCs). With IMPDH being the rate-determining enzyme for guanine ribonucleotide (rGNP) biosynthesis, its requirement implicates rGNPs as important regulators of ASC asymmetric self-renewal and immortal DNA strand cosegregation. An in silico analysis of global gene expression data from human cancer cell lines underscored the importance of p53-IMPDH-rGNP regulation for normal tissue cell kinetics, providing further support for the concept that ASCs are key targets for adult tissue carcinogenesis.


Assuntos
Transformação Celular Neoplásica/genética , Segregação de Cromossomos/genética , DNA/genética , IMP Desidrogenase/fisiologia , Células-Tronco/fisiologia , Proteína Supressora de Tumor p53/fisiologia , Ciclo Celular/fisiologia , Processos de Crescimento Celular/fisiologia , Transformação Celular Neoplásica/metabolismo , Regulação para Baixo , Regulação Enzimológica da Expressão Gênica , Humanos , IMP Desidrogenase/biossíntese , IMP Desidrogenase/genética , Células-Tronco/enzimologia , Células-Tronco/metabolismo , Células-Tronco/patologia , Proteína Supressora de Tumor p53/biossíntese , Proteína Supressora de Tumor p53/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...