Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Transl Psychiatry ; 14(1): 14, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38191622

RESUMO

Schizophrenia is a chronic neurodevelopmental disorder with an inflammatory/prooxidant component. N-acetylcysteine (NAC) has been evaluated in schizophrenia as an adjuvant to antipsychotics, but its role as a preventive strategy has not been sufficiently explored. We aimed to evaluate the potential of NAC administration in two-time windows before the onset of symptoms in a schizophrenia-like maternal immune stimulation (MIS) rat model. Pregnant Wistar rats were injected with Poly I:C or Saline on gestational day (GD) 15. Three different preventive approaches were evaluated: 1) NAC treatment during periadolescence in the offspring (from postnatal day [PND] 35 to 49); 2) NAC treatment during pregnancy after MIS challenge until delivery (GD15-21); and 3) NAC treatment throughout all pregnancy (GD1-21). At postnatal day (PND) 70, prepulse inhibition (PPI) and anxiety levels were evaluated. In vivo magnetic resonance (MR) imaging was acquired on PND100 to assess structural changes in gray and white matter, and brain metabolite concentrations. Additionally, inflammation and oxidative stress (IOS) markers were measured ex vivo in selected brain regions. MIS offspring showed behavioral, neuroanatomical, and biochemical alterations. Interestingly, NAC treatment during periadolescence prevented PPI deficits and partially counteracted some biochemical imbalances. Moreover, NAC treatments during pregnancy not only replicated the beneficial outcomes reported by the treatment in periadolescence, but also prevented some neuroanatomical deficits, including reductions in hippocampal and corpus callosum volumes. This study suggests that early reduction of inflammation and prooxidation could help prevent the onset of schizophrenia-like symptoms, supporting the importance of anti-IOS compounds in ameliorating this disorder.


Assuntos
Acetilcisteína , Esquizofrenia , Feminino , Gravidez , Ratos , Animais , Ratos Wistar , Acetilcisteína/farmacologia , Esquizofrenia/tratamento farmacológico , Esquizofrenia/prevenção & controle , Poli I-C , Inflamação
2.
Psychiatry Res ; 331: 115643, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38064909

RESUMO

Prenatal infections and cannabis use during adolescence are well-recognized risk factors for schizophrenia. As inflammation and oxidative stress (OS) contribute to this disorder, anti-inflammatory drugs have been proposed as potential therapies. This study aimed to evaluate the association between delta-9-tetrahydrocannabinol (THC) and schizophrenia-like abnormalities in a maternal immune activation (MIA) model. Additionally, we assessed the preventive effect of cannabidiol (CBD), a non-psychotropic/anti-inflammatory cannabinoid. THC and/or CBD were administered to Saline- and MIA-offspring during periadolescence. At adulthood, THC-exposed MIA-offspring showed significant improvements in sensorimotor gating deficits. Structural and metabolic brain changes were evaluated by magnetic resonance imaging, revealing cortical shrinkage in Saline- and enlargement in MIA-offspring after THC-exposure. Additionally, MIA-offspring displayed enlarged ventricles and decreased hippocampus, which were partially reverted by both cannabinoids. CBD prevented THC-induced reduction in the corpus callosum, despite affecting white matter structure. Post-mortem studies revealed detrimental effects of THC, including increased inflammation and oxidative stress. CBD partially reverted these pro-inflammatory alterations and modulated THC's effects on the endocannabinoid system. In conclusion, contrary to expectations, THC exhibited greater behavioural and morphometric benefits, despite promoting a pro-inflammatory state that CBD partially reverted. Further research is needed to elucidate the underlying mechanisms involved in the observed benefits of THC.


Assuntos
Canabidiol , Canabinoides , Cannabis , Esquizofrenia , Humanos , Gravidez , Feminino , Adulto , Canabidiol/farmacologia , Canabidiol/uso terapêutico , Esquizofrenia/tratamento farmacológico , Esquizofrenia/metabolismo , Dronabinol/farmacologia , Poli I-C , Inflamação , Anti-Inflamatórios
3.
Cell Death Discov ; 9(1): 327, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37658038

RESUMO

Pituitary gonadotrope cells are essential for the endocrine regulation of reproduction in vertebrates. These cells emerge early during embryogenesis, colonize the pituitary glands and organize in tridimensional networks, which are believed to be crucial to ensure proper regulation of fertility. However, the molecular mechanisms regulating the organization of gonadotrope cell population during embryogenesis remain poorly understood. In this work, we characterized the target genes of NEUROD1 and NEUROD4 transcription factors in the immature gonadotrope αT3-1 cell model by in silico functional genomic analyses. We demonstrated that NEUROD1/4 regulate genes belonging to the focal adhesion pathway. Using CRISPR/Cas9 knock-out approaches, we established a double NEUROD1/4 knock-out αT3-1 cell model and demonstrated that NEUROD1/4 regulate cell adhesion and cell motility. We then characterized, by immuno-fluorescence, focal adhesion number and signaling in the context of NEUROD1/4 insufficiency. We demonstrated that NEUROD1/4 knock-out leads to an increase in the number of focal adhesions associated with signaling abnormalities implicating the c-Src kinase. We further showed that the neurotrophin tyrosine kinase receptor 3 NTRK3, a target of NEUROD1/4, interacts physically with c-Src. Furthermore, using motility rescue experiments and time-lapse video microscopy, we demonstrated that NTRK3 is a major regulator of gonadotrope cell motility. Finally, using a Ntrk3 knock-out mouse model, we showed that NTRK3 regulates gonadotrope cells positioning in the developing pituitary, in vivo. Altogether our study demonstrates that the Neurod1/4-Ntrk3-cSrc pathway is a major actor of gonadotrope cell mobility, and thus provides new insights in the regulation of gonadotrope cell organization within the pituitary gland.

4.
Nature ; 620(7973): 402-408, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37532929

RESUMO

Epithelial-to-mesenchymal transition (EMT) regulates tumour initiation, progression, metastasis and resistance to anti-cancer therapy1-7. Although great progress has been made in understanding the role of EMT and its regulatory mechanisms in cancer, no therapeutic strategy to pharmacologically target EMT has been identified. Here we found that netrin-1 is upregulated in a primary mouse model of skin squamous cell carcinoma (SCC) exhibiting spontaneous EMT. Pharmacological inhibition of netrin-1 by administration of NP137, a netrin-1-blocking monoclonal antibody currently used in clinical trials in human cancer (ClinicalTrials.gov identifier NCT02977195 ), decreased the proportion of EMT tumour cells in skin SCC, decreased the number of metastases and increased the sensitivity of tumour cells to chemotherapy. Single-cell RNA sequencing revealed the presence of different EMT states, including epithelial, early and late hybrid EMT, and full EMT states, in control SCC. By contrast, administration of NP137 prevented the progression of cancer cells towards a late EMT state and sustained tumour epithelial states. Short hairpin RNA knockdown of netrin-1 and its receptor UNC5B in EPCAM+ tumour cells inhibited EMT in vitro in the absence of stromal cells and regulated a common gene signature that promotes tumour epithelial state and restricts EMT. To assess the relevance of these findings to human cancers, we treated mice transplanted with the A549 human cancer cell line-which undergoes EMT following TGFß1 administration8,9-with NP137. Netrin-1 inhibition decreased EMT in these transplanted A549 cells. Together, our results identify a pharmacological strategy for targeting EMT in cancer, opening up novel therapeutic interventions for anti-cancer therapy.


Assuntos
Anticorpos Monoclonais , Carcinoma de Células Escamosas , Transição Epitelial-Mesenquimal , Netrina-1 , Neoplasias Cutâneas , Animais , Humanos , Camundongos , Células A549 , Carcinoma de Células Escamosas/tratamento farmacológico , Carcinoma de Células Escamosas/patologia , Linhagem Celular Tumoral , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Receptores de Netrina/antagonistas & inibidores , Receptores de Netrina/deficiência , Receptores de Netrina/genética , Netrina-1/antagonistas & inibidores , Netrina-1/deficiência , Netrina-1/genética , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/farmacologia , Modelos Animais de Doenças , Neoplasias Cutâneas/tratamento farmacológico , Neoplasias Cutâneas/patologia , Anticorpos Monoclonais/farmacologia , Anticorpos Monoclonais/uso terapêutico , Metástase Neoplásica/tratamento farmacológico , Análise da Expressão Gênica de Célula Única , RNA-Seq , Molécula de Adesão da Célula Epitelial/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto , Fator de Crescimento Transformador beta1/farmacologia
5.
Nature ; 620(7973): 409-416, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37532934

RESUMO

Netrin-1 is upregulated in cancers as a protumoural mechanism1. Here we describe netrin-1 upregulation in a majority of human endometrial carcinomas (ECs) and demonstrate that netrin-1 blockade, using an anti-netrin-1 antibody (NP137), is effective in reduction of tumour progression in an EC mouse model. We next examined the efficacy of NP137, as a first-in-class single agent, in a Phase I trial comprising 14 patients with advanced EC. As best response we observed 8 stable disease (8 out of 14, 57.1%) and 1 objective response as RECIST v.1.1 (partial response, 1 out of 14 (7.1%), 51.16% reduction in target lesions at 6 weeks and up to 54.65% reduction during the following 6 months). To evaluate the NP137 mechanism of action, mouse tumour gene profiling was performed, and we observed, in addition to cell death induction, that NP137 inhibited epithelial-to-mesenchymal transition (EMT). By performing bulk RNA sequencing (RNA-seq), spatial transcriptomics and single-cell RNA-seq on paired pre- and on-treatment biopsies from patients with EC from the NP137 trial, we noted a net reduction in tumour EMT. This was associated with changes in immune infiltrate and increased interactions between cancer cells and the tumour microenvironment. Given the importance of EMT in resistance to current standards of care2, we show in the EC mouse model that a combination of NP137 with carboplatin-paclitaxel outperformed carboplatin-paclitaxel alone. Our results identify netrin-1 blockade as a clinical strategy triggering both tumour debulking and EMT inhibition, thus potentially alleviating resistance to standard treatments.


Assuntos
Neoplasias do Endométrio , Transição Epitelial-Mesenquimal , Netrina-1 , Animais , Feminino , Humanos , Camundongos , Biópsia , Carboplatina/administração & dosagem , Carboplatina/farmacologia , Carboplatina/uso terapêutico , Modelos Animais de Doenças , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Neoplasias do Endométrio/tratamento farmacológico , Neoplasias do Endométrio/genética , Neoplasias do Endométrio/imunologia , Neoplasias do Endométrio/patologia , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Perfilação da Expressão Gênica , Netrina-1/antagonistas & inibidores , Paclitaxel/administração & dosagem , Paclitaxel/farmacologia , Paclitaxel/uso terapêutico , RNA-Seq , Análise da Expressão Gênica de Célula Única , Microambiente Tumoral/efeitos dos fármacos
6.
Cell Rep ; 42(8): 112947, 2023 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-37572323

RESUMO

The molecular code that controls synapse formation and maintenance in vivo has remained quite sparse. Here, we identify that the secreted protein Adamtsl3 functions as critical hippocampal synapse organizer acting through the transmembrane receptor DCC (deleted in colorectal cancer). Traditionally, DCC function has been associated with glutamatergic synaptogenesis and plasticity in response to Netrin-1 signaling. We demonstrate that early post-natal deletion of Adamtsl3 in neurons impairs DCC protein expression, causing reduced density of both glutamatergic and GABAergic synapses. Adult deletion of Adamtsl3 in either GABAergic or glutamatergic neurons does not interfere with DCC-Netrin-1 function at glutamatergic synapses but controls DCC signaling at GABAergic synapses. The Adamtsl3-DCC signaling unit is further essential for activity-dependent adaptations at GABAergic synapses, involving DCC phosphorylation and Src kinase activation. These findings might be particularly relevant for schizophrenia because genetic variants in Adamtsl3 and DCC have been independently linked with schizophrenia in patients.


Assuntos
Neurônios , Sinapses , Humanos , Receptor DCC/metabolismo , Netrina-1/metabolismo , Neurônios/metabolismo , Transdução de Sinais , Quinases da Família src/metabolismo , Sinapses/metabolismo , Animais
7.
Cell Death Differ ; 30(10): 2201-2212, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37633969

RESUMO

Drug resistance and cancer relapse represent significant therapeutic challenges after chemotherapy or immunotherapy, and a major limiting factor for long-term cancer survival. Netrin-1 was initially identified as a neuronal navigation cue but has more recently emerged as an interesting target for cancer therapy, which is currently clinically investigated. We show here that netrin-1 is an independent prognostic marker for clinical progression of breast and ovary cancers. Cancer stem cells (CSCs)/Tumor initiating cells (TICs) are hypothesized to be involved in clinical progression, tumor relapse and resistance. We found a significant correlation between netrin-1 expression and cancer stem cell (CSC) markers levels. We also show in different mice models of resistance to chemotherapies that netrin-1 interference using a therapeutic netrin-1 blocking antibody alleviates resistance to chemotherapy and triggers an efficient delay in tumor relapse and this effect is associated with CSCs loss. We also demonstrate that netrin-1 interference limits tumor resistance to immune checkpoint inhibitor and provide evidence linking this enhanced anti-tumor efficacy to a decreased recruitment of a subtype of myeloid-derived suppressor cells (MDSCs) called polymorphonuclear (PMN)-MDSCs. We have functionally demonstrated that these immune cells promote CSCs features and, consequently, resistance to anti-cancer treatments. Together, these data support the view of both a direct and indirect contribution of netrin-1 to cancer stemness and we propose that this may lead to therapeutic opportunities by combining conventional chemotherapies and immunotherapies with netrin-1 interfering drugs.

8.
Acta Biomater ; 170: 260-272, 2023 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-37574159

RESUMO

Amyloid-ß (Aß) plaques from Alzheimer's Disease (AD) can be visualized ex vivo in label-free brain samples using synchrotron X-ray phase-contrast tomography (XPCT). However, for XPCT to be useful as a screening method for amyloid pathology, it is essential to understand which factors drive the detection of Aß plaques. The current study was designed to test the hypothesis that Aß-related contrast in XPCT could be caused by Aß fibrils and/or by metals trapped in the plaques. Fibrillar and elemental compositions of Aß plaques were probed in brain samples from different types of AD patients and AD models to establish a relationship between XPCT contrast and Aß plaque characteristics. XPCT, micro-Fourier-Transform Infrared spectroscopy and micro-X-Ray Fluorescence spectroscopy were conducted on human samples (one genetic and one sporadic case) and on four transgenic rodent strains (mouse: APPPS1, ArcAß, J20; rat: TgF344). Aß plaques from the genetic AD patient were visible using XPCT, and had higher ß-sheet content and higher metal levels than those from the sporadic AD patient, which remained undetected by XPCT. Aß plaques in J20 mice and TgF344 rats appeared hyperdense on XPCT images, while they were hypodense with a hyperdense core in the case of APPPS1 and ArcAß mice. In all four transgenic strains, ß-sheet content was similar, while metal levels were highly variable: J20 (zinc and iron) and TgF344 (copper) strains showed greater metal accumulation than APPPS1 and ArcAß mice. Hence, a hyperdense contrast formation of Aß plaques in XPCT images was associated with biometal entrapment within plaques. STATEMENT OF SIGNIFICANCE: The role of metals in Alzheimer's disease (AD) has been a subject of continuous interest. It was already known that amyloid-ß plaques (Aß), the earliest hallmark of AD, tend to trap endogenous biometals like zinc, iron and copper. Here we show that this metal accumulation is the main reason why Aß plaques are detected with a new technique called X-ray phase contrast tomography (XPCT). XPCT enables to map the distribution of Aß plaques in the whole excised brain without labeling. In this work we describe a unique collection of four transgenic models of AD, together with a human sporadic and a rare genetic case of AD, thus exploring the full spectrum of amyloid contrast in XPCT.


Assuntos
Doença de Alzheimer , Oligoelementos , Humanos , Camundongos , Animais , Ratos , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/patologia , Cobre/química , Raios X , Camundongos Transgênicos , Peptídeos beta-Amiloides/metabolismo , Metais , Zinco/química , Ferro , Encéfalo/metabolismo , Amiloide , Placa Amiloide/diagnóstico por imagem , Placa Amiloide/química , Modelos Animais de Doenças
9.
Mol Oncol ; 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37452637

RESUMO

Nutrient availability is a key determinant of tumor cell behavior. While nutrient-rich conditions favor proliferation and tumor growth, scarcity, and particularly glutamine starvation, promotes cell dedifferentiation and chemoresistance. Here, linking ribosome biogenesis plasticity with tumor cell fate, we uncover that the amino acid sensor general control non-derepressible 2 (GCN2; also known as eIF-2-alpha kinase 4) represses the expression of the precursor of ribosomal RNA (rRNA), 47S, under metabolic stress. We show that blockade of GCN2 triggers cell death by an irremediable nucleolar stress and subsequent TP53-mediated apoptosis in patient-derived models of colon adenocarcinoma (COAD). In nutrient-rich conditions, a cell-autonomous GCN2 activity supports cell proliferation by stimulating 47S rRNA transcription, independently of the canonical integrated stress response (ISR) axis. Impairment of GCN2 activity prevents nuclear translocation of methionyl-tRNA synthetase (MetRS), resulting in nucleolar stress, mTORC1 inhibition and, ultimately, autophagy induction. Inhibition of the GCN2-MetRS axis drastically improves the cytotoxicity of RNA polymerase I (RNA pol I) inhibitors, including the first-line chemotherapy oxaliplatin, on patient-derived COAD tumoroids. Our data thus reveal that GCN2 differentially controls ribosome biogenesis according to the nutritional context. Furthermore, pharmacological co-inhibition of the two GCN2 branches and RNA pol I activity may represent a valuable strategy for elimination of proliferative and metabolically stressed COAD cells.

10.
Antioxidants (Basel) ; 12(4)2023 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-37107344

RESUMO

The microbiota-gut-brain axis is a complex interconnected system altered in schizophrenia. The antioxidant N-acetylcysteine (NAC) has been proposed as an adjunctive therapy to antipsychotics in clinical trials, but its role in the microbiota-gut-brain axis has not been sufficiently explored. We aimed to describe the effect of NAC administration during pregnancy on the gut-brain axis in the offspring from the maternal immune stimulation (MIS) animal model of schizophrenia. Pregnant Wistar rats were treated with PolyI:C/Saline. Six groups of animals were studied according to the study factors: phenotype (Saline, MIS) and treatment (no NAC, NAC 7 days, NAC 21 days). Offspring were subjected to the novel object recognition test and were scanned using MRI. Caecum contents were used for metagenomics 16S rRNA sequencing. NAC treatment prevented hippocampal volume reduction and long-term memory deficits in MIS-offspring. In addition, MIS-animals showed lower bacterial richness, which was prevented by NAC. Moreover, NAC7/NAC21 treatments resulted in a reduction of proinflammatory taxons in MIS-animals and an increase in taxa known to produce anti-inflammatory metabolites. Early approaches, like this one, with anti-inflammatory/anti-oxidative compounds, especially in neurodevelopmental disorders with an inflammatory/oxidative basis, may be useful in modulating bacterial microbiota, hippocampal size, as well as hippocampal-based memory impairments.

11.
EMBO Mol Med ; 15(4): e16732, 2023 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-36876343

RESUMO

Targeted radionuclide therapy is a revolutionary tool for the treatment of highly spread metastatic cancers. Most current approaches rely on the use of vectors to deliver radionuclides to tumor cells, targeting membrane-bound cancer-specific moieties. Here, we report the embryonic navigation cue netrin-1 as an unanticipated target for vectorized radiotherapy. While netrin-1, known to be re-expressed in tumoral cells to promote cancer progression, is usually characterized as a diffusible ligand, we demonstrate here that netrin-1 is actually poorly diffusible and bound to the extracellular matrix. A therapeutic anti-netrin-1 monoclonal antibody (NP137) has been preclinically developed and was tested in various clinical trials showing an excellent safety profile. In order to provide a companion test detecting netrin-1 in solid tumors and allowing the selection of therapy-eligible patients, we used the clinical-grade NP137 agent and developed an indium-111-NODAGA-NP137 single photon emission computed tomography (SPECT) contrast agent. NP137-111 In provided specific detection of netrin-1-positive tumors with an excellent signal-to-noise ratio using SPECT/CT imaging in different mouse models. The high specificity and strong affinity of NP137 paved the way for the generation of lutetium-177-DOTA-NP137, a novel vectorized radiotherapy, which specifically accumulated in netrin-1-positive tumors. We demonstrate here, using tumor cell-engrafted mouse models and a genetically engineered mouse model, that a single systemic injection of NP137-177 Lu provides important antitumor effects and prolonged mouse survival. Together, these data support the view that NP137-111 In and NP137-177 Lu may represent original and unexplored imaging and therapeutic tools against advanced solid cancers.


Assuntos
Neoplasias , Radioimunoterapia , Animais , Camundongos , Linhagem Celular Tumoral , Neoplasias/diagnóstico por imagem , Neoplasias/radioterapia , Radioimunoterapia/métodos , Tomografia Computadorizada de Emissão de Fóton Único , Tomografia Computadorizada por Raios X , Netrina-1/metabolismo
12.
Exp Cell Res ; 426(2): 113568, 2023 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-36967104

RESUMO

l-Asparaginase is a cornerstone of acute lymphoblastic leukemia (ALL) therapy since lymphoblasts lack asparagine synthetase (ASNS) and rely on extracellular asparagine availability for survival. Resistance mechanisms are associated with increased ASNS expression in ALL. However, the association between ASNS and l-Asparaginase efficacy in solid tumors remains unclear, thus limiting clinical development. Interestingly, l-Asparaginase also has a glutaminase co-activity that is crucial in pancreatic cancer where KRAS mutations activate glutamine metabolism. By developing l-Asparaginase-resistant pancreatic cancer cells and using OMICS approaches, we identified glutamine synthetase (GS) as a marker of resistance to l-Asparaginase. GS is the only enzyme able to synthesize glutamine, and its expression also correlates with l-Asparaginase efficacy in 27 human cell lines from 11 cancer indications. Finally, we further demonstrated that GS inhibition prevents cancer cell adaptation to l-Asparaginase-induced glutamine starvation. These findings could pave the way to the development of promising drug combinations to overcome l-Asparaginase resistance.


Assuntos
Neoplasias Pancreáticas , Leucemia-Linfoma Linfoblástico de Células Precursoras , Humanos , Asparaginase/farmacologia , Glutamato-Amônia Ligase/genética , Glutaminase/genética , Glutamina/metabolismo , Neoplasias Pancreáticas/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Neoplasias Pancreáticas
13.
Cancers (Basel) ; 15(3)2023 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-36765895

RESUMO

Documenting bacteremia at the onset of fever in immunosuppressed children is challenging; therefore, it leads to the early administration of broad-spectrum antibiotics. We aimed to analyse the evolution of antibiotic resistance profiles of bacterial bloodstream infections (BSI) and gut colonisations in a large cohort of immunocompromised children carrying a central venous catheter, in comparison with a prior, similar study conducted in our centre from 2014 to 2017. A retrospective, observational cohort study was conducted from January 2018 to December 2021, in a tertiary centre for paediatric immuno-haematology and oncology. Empirical antibiotic therapy was adapted to the immunosuppression risk group and prior bacterial colonisation. There was a mean of 6.9 BSI/1000 patient bed days. Multidrug-resistant bacteria (MDRB) associated BSI accounted for 35/273 (12.8%). The incidence of MDRB gum/gut colonisation and MDRB associated BSI increased annually and correlated with the level of immunosuppression (p = 0.024). One third (34.7%) of the BSI episodes were not associated with neutropenia. As compared to the previous study, an alarming emergence of MDRB responsible for gut colonisations and BSI in immunosuppressed children was reported over the last four years. The degree of immunosuppression directly correlates with the risk of having an MDRB gut colonisation or MDRB BSI.

14.
Cancers (Basel) ; 15(3)2023 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-36765930

RESUMO

Reactive oxygen species (ROS) are considered to be the main drivers of inflammatory bowel disease. We investigated whether this permanent insult compels intestinal stem cells to develop strategies to dampen the deleterious effects of ROS. As an adverse effect, this adaptation process may increase their tolerance to oncogenic insults and facilitate their neoplastic transformation. We submitted immortalized human colonic epithelial cells to either a mimic of chronic inflammation or to a chemical peroxide, analyzed how they adapted to stress, and addressed the biological relevance of these observations in databases. We demonstrated that cells adapt to chronic-inflammation-associated oxidative stress in vitro through a partial genetic reprogramming. Through a gene set enrichment analysis, we showed that this program is recurrently active in the intestinal mucosae of Crohn's and ulcerative colitis disease patients and evolves alongside disease progression. Based on a previously reported characterization of intestinal stem and precursor cells using tracing experiments, we lastly confirmed the activation of the program in intestinal precursor cells during murine colorectal cancer development. This adaptive process is thus likely to play a role in the progression of Crohn's and ulcerative disease, and potentially in the initiation of colorectal cancer.

15.
Cell Death Dis ; 14(2): 171, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36854682

RESUMO

Notch signaling is a conserved signaling pathway that participates in many aspects of mammary gland development and homeostasis, and has extensively been associated with breast tumorigenesis. Here, to unravel the as yet debated role of Notch3 in breast cancer development, we investigated its expression in human breast cancer samples and effects of its loss in mice. Notch3 expression was very weak in breast cancer cells and was associated with good patient prognosis. Interestingly, its expression was very strong in stromal cells of these patients, though this had no prognostic value. Mechanistically, we demonstrated that Notch3 prevents tumor initiation via HeyL-mediated inhibition of Mybl2, an important regulator of cell cycle. In the mammary glands of Notch3-deficient mice, we observed accelerated tumor initiation and proliferation in a MMTV-Neu model. Notch3-null tumors were enriched in Mybl2 mRNA signature and protein expression. Hence, our study reinforces the anti-tumoral role of Notch3 in breast tumorigenesis.


Assuntos
Neoplasias da Mama , Transformação Celular Neoplásica , Animais , Feminino , Humanos , Camundongos , Fatores de Transcrição Hélice-Alça-Hélice Básicos , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Ciclo Celular , Proteínas de Ciclo Celular , Divisão Celular , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Homeostase , Receptor Notch3/genética , Proteínas Repressoras , Transativadores
16.
Front Pharmacol ; 13: 886514, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35959428

RESUMO

There is evidence that in schizophrenia, imbalances in inflammatory and oxidative processes occur during pregnancy and in the early postnatal period, generating interest in the potential therapeutic efficacy of anti-inflammatory and antioxidant compounds. Mangiferin is a polyphenolic compound abundant in the leaves of Mangifera indica L. that has robust antioxidant and anti-inflammatory properties, making it a potential candidate for preventive or co-adjuvant therapy in schizophrenia. Hence, this study set-out to evaluate the effect of mango leaf extract (MLE) in a model of schizophrenia based on maternal immune activation, in which Poly I:C (4 mg/kg) is administered intravenously to pregnant rats. Young adult (postnatal day 60-70) or adolescent (postnatal day 35-49) male offspring received MLE (50 mg/kg of mangiferin) daily, and the effects of MLE in adolescence were compared to those of risperidone, assessing behavior, brain magnetic resonance imaging (MRI), and oxidative/inflammatory and antioxidant mediators in the adult offspring. MLE treatment in adulthood reversed the deficit in prepulse inhibition (PPI) but it failed to attenuate the sensitivity to amphetamine and the deficit in novel object recognition (NOR) induced. By contrast, adolescent MLE treatment prevented the sensorimotor gating deficit in the PPI test, producing an effect similar to that of risperidone. This MLE treatment also produced a reduction in grooming behavior, but it had no effect on anxiety or novel object recognition memory. MRI studies revealed that adolescent MLE administration partially counteracted the cortical shrinkage, and cerebellum and ventricle enlargement. In addition, MLE administration in adolescence reduced iNOS mediated inflammatory activation and it promoted the expression of biomarkers of compensatory antioxidant activity in the prefrontal cortex and hippocampus, as witnessed through the reduction of Keap1 and the accumulation of NRF2 and HO1. Together, these findings suggest that MLE might be an alternative therapeutic or preventive add-on strategy to improve the clinical expression of schizophrenia in adulthood, while also modifying the time course of this disease at earlier stages in populations at high-risk.

17.
J Vis Exp ; (181)2022 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-35404344

RESUMO

Deep brain stimulation (DBS) is an invasive neurosurgical technique based on the application of electrical pulses to brain structures involved in the patient's pathophysiology. Despite the long history of DBS, its mechanism of action and appropriate protocols remain unclear, highlighting the need for research aiming to solve these enigmas. In this sense, evaluating the in vivo effects of DBS using functional imaging techniques represents a powerful strategy to determine the impact of stimulation on brain dynamics. Here, an experimental protocol for preclinical models (Wistar rats), combined with a longitudinal study [18F]-fluorodeoxyclucose positron emission tomography (FDG-PET), to assess the acute consequences of DBS on brain metabolism is described. First, animals underwent stereotactic surgery for bilateral implantation of electrodes into the prefrontal cortex. A post-surgical computerized tomography (CT) scan of each animal was acquired to verify electrode placement. After one week of recovery, a first static FDG-PET of each operated animal without stimulation (D1) was acquired, and two days later (D2), a second FDG-PET was acquired while animals were stimulated. For that, the electrodes were connected to an isolated stimulator after administering FDG to the animals. Thus, animals were stimulated during the FDG uptake period (45 min), recording the acute effects of DBS on brain metabolism. Given the exploratory nature of this study, FDG-PET images were analyzed by a voxel-wise approach based on a paired T-test between D1 and D2 studies. Overall, the combination of DBS and imaging studies allows describing the neuromodulation consequences on neural networks, ultimately helping to unravel the conundrums surrounding DBS.


Assuntos
Estimulação Encefálica Profunda , Fluordesoxiglucose F18 , Animais , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Estimulação Encefálica Profunda/métodos , Fluordesoxiglucose F18/metabolismo , Estudos Longitudinais , Tomografia por Emissão de Pósitrons/métodos , Ratos , Ratos Wistar
18.
Biomed Opt Express ; 13(3): 1640-1653, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-35414980

RESUMO

While numerous transgenic mouse strains have been produced to model the formation of amyloid-ß (Aß) plaques in the brain, efficient methods for whole-brain 3D analysis of Aß deposits have to be validated and standardized. Moreover, routine immunohistochemistry performed on brain slices precludes any shape analysis of Aß plaques, or require complex procedures for serial acquisition and reconstruction. The present study shows how in-line (propagation-based) X-ray phase-contrast tomography (XPCT) combined with ethanol-induced brain sample dehydration enables hippocampus-wide detection and morphometric analysis of Aß plaques. Performed in three distinct Alzheimer mouse strains, the proposed workflow identified differences in signal intensity and 3D shape parameters: 3xTg displayed a different type of Aß plaques, with a larger volume and area, greater elongation, flatness and mean breadth, and more intense average signal than J20 and APP/PS1. As a label-free non-destructive technique, XPCT can be combined with standard immunohistochemistry. XPCT virtual histology could thus become instrumental in quantifying the 3D spreading and the morphological impact of seeding when studying prion-like properties of Aß aggregates in animal models of Alzheimer's disease. This is Part II of a series of two articles reporting the value of in-line XPCT for virtual histology of the brain; Part I shows how in-line XPCT enables 3D myelin mapping in the whole rodent brain and in human autopsy brain tissue.

19.
J Cancer ; 13(4): 1272-1281, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35281861

RESUMO

Ten to fifteen percent of children with acute lymphoblastic leukemia (ALL) relapse following treatment. Of these, less than 2% display ophthalmic relapses, which owing to their scarcity, are largely undocumented, leaving clinicians with few diagnostic and therapeutic recommendations, despite serious functional sequelae. We conducted a French multicenter retrospective study to collect all clinical, radiological, biological, and therapeutic data, and outcomes for children with ALL ophthalmic relapses. From 2000 to 2020, 20 ophthalmic relapses occurring after first-line therapy performed before January 1st, 2017 were included in our study: 14 B-ALL and 6 T-ALL. Fifteen patients (75%) had concomitant involvement of the central nervous system, and 11 (55%) a combined bone marrow relapse. Only 1 had an isolated ophthalmic relapse. Eight children (40%) died, 7 from a refractory disease and 1 from toxic death, and 4 patients relapsed. With a median follow-up of 63.1 months, 8 patients are currently alive in continuous complete remission with only 2 displaying severe ophthalmic sequelae. Although rare, ophthalmic relapse could have a significant impact on the functional prognosis of survivors. Their management must be multidisciplinary, with a central role given to ophthalmologists.

20.
Sci Rep ; 12(1): 4643, 2022 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-35301397

RESUMO

Vulnerability to addiction may be given by the individual's risk of developing an addiction during their lifetime. A challenge in the neurobiology of drug addiction is understanding why some people become addicted to drugs. Here, we used positron emission tomography (PET) and statistical parametric mapping (SPM) to evaluate changes in brain glucose metabolism in response to chronic morphine self-administration (MSA) in two rat strains with different vulnerability to drug abuse, Lewis (LEW) and Fischer 344 (F344). Four groups of animals were trained to self-administer morphine or saline for 15 days. 2-deoxy-2-[18F]-fluoro-D-glucose (FDG)-PET studies were performed on the last day of MSA (acquisition phase) and after 15 days of withdrawal. PET data were analyzed using SPM12. LEW-animals self-administered more morphine injections per session than F344-animals. We found significant brain metabolic differences between LEW and F344 strains in the cortex, hypothalamus, brainstem, and cerebellum. In addition, the different brain metabolic patterns observed after the MSA study between these rat strains indicate differences in the efficiency of neural substrates to translate the drug effects, which could explain the differences in predisposition to morphine abuse between one individual and another. These findings have important implications for the use of these rat strains in translational morphine and opiate research.


Assuntos
Glucose , Morfina , Animais , Encéfalo/metabolismo , Glucose/metabolismo , Humanos , Morfina/farmacologia , Neuroimagem , Ratos , Ratos Endogâmicos F344 , Ratos Endogâmicos Lew , Especificidade da Espécie , Tomografia Computadorizada por Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...