Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Spectrochim Acta A Mol Biomol Spectrosc ; 305: 123483, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-37804708

RESUMO

BACKGROUND: Nucleoside polyphosphate (NPP) anions are important for enzymatic activity and should be monitored by scientists in industry and medicine. By elucidating enzyme kinetics and processes, it aids in the discovery of effective inhibitors and activators. Nucleoside polyphosphate (NPP) anions are used by kinases, GTPases, and glycosyltransferases (GTs). Phosphorylation of certain amino acid residues (Ser, Thr, and Tyr) on proteins requires the breakdown of ATP by protein kinases, which produces ADP. Protein kinases, breakdown of ATP, and NPP are the focus of oncology drug development because the aberrant control of kinase activity is a common cause of cancer. RESULTS: However, a discriminative turn-on fluorescent property is exhibited by non-fluorescent p-tertbutylcalix[4]arene modified 1,2,3-triazole containing bis-ruthenium polypyridyl complex (RL) upon the addition of phosphate anions such as (dihydrogen pyrophosphate (H2P2O72-) and dihydrogen phosphate (H2PO4-)) in CH3CN solvent and Adenosine Diphosphate (ADP) in CH3CN/HEPES (pH = 7.4) buffer (9/1, v/v). The probe RL shows a better-recognizing ability with pyrophosphate anion (H2P2O72-) than dihydrogen phosphate anion (H2PO4-). With H2P2O72- and H2PO4- anions, the RL detection limit was calculated to be as low as 83 nM and 198 nM, respectively. SIGNIFICANCE: The calix[4]arene macrocycle's excellent size and binding cone conformation make it a good host-guest interface for the pyrophosphate anion and ADP. The bis-ruthenium polypyridyl complex's connection to the p-tertbutyl calix[4]arene moiety creates the ADP selectivity turn-on sensor. When moving from mono-nuclear to bi-nuclear ruthenium complex anchored on p-tertbutyl calix[4]arene, the probe can differentiate ADP, ATP, and AMP. Furthermore, this platform is a great resource for creating devices to simultaneously assess phosphate anions in environmental samples.


Assuntos
Fosfatos , Rutênio , Fosfatos/química , Difosfatos , Rutênio/química , Nucleosídeos , Ânions/química , Difosfato de Adenosina , Trifosfato de Adenosina , Proteínas Quinases
3.
Front Immunol ; 14: 1275378, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37954592

RESUMO

Tertiary lymphoid structures (TLS) are lymph node-like aggregates that can form in association with chronic inflammation or cancer. Mature TLS are organized into B and T cell zones, and are not encapsulated but include all cell types necessary for eliciting an adaptive immune response. TLS have been observed in various cancer types and are generally associated with a positive prognosis as well as increased sensitivity to cancer immunotherapy. However, a comprehensive understanding of the roles of TLS in eliciting anti-tumor immunity as well as the mechanisms involved in their formation and function is still lacking. Further studies in orthotopic, immunocompetent cancer models are necessary to evaluate the influence of TLS on cancer therapies, and to develop new treatments that promote their formation in cancer. Here, we review key insights obtained from functional murine studies, discuss appropriate models that can be used to study cancer-associated TLS, and suggest guidelines on how to identify TLS and distinguish them from other antigen-presenting niches.


Assuntos
Neoplasias , Estruturas Linfoides Terciárias , Animais , Camundongos , Neoplasias/terapia , Neoplasias/patologia , Prognóstico , Linfonodos/metabolismo , Inflamação/patologia
4.
Nat Commun ; 14(1): 4732, 2023 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-37563127

RESUMO

Chimeric antigen receptor (CAR)-T cell therapy is rapidly advancing as cancer treatment, however, designing an optimal CAR remains challenging. A single-chain variable fragment (scFv) is generally used as CAR targeting moiety, wherein the complementarity-determining regions (CDRs) define its specificity. We report here that the CDR loops can cause CAR clustering, leading to antigen-independent tonic signalling and subsequent CAR-T cell dysfunction. We show via CARs incorporating scFvs with identical framework and varying CDR sequences that CARs may cluster on the T cell surface, which leads to antigen-independent CAR-T cell activation, characterized by increased cell size and interferon (IFN)-γ secretion. This results in CAR-T cell exhaustion, activation-induced cell death and reduced responsiveness to target-antigen-expressing tumour cells. CDR mutagenesis confirms that the CAR-clustering is mediated by CDR-loops. In summary, antigen-independent tonic signalling can be induced by CDR-mediated CAR clustering, which could not be predicted from the scFv sequences, but could be tested for by evaluating the activity of unstimulated CAR-T cells.


Assuntos
Regiões Determinantes de Complementaridade , Anticorpos de Cadeia Única , Regiões Determinantes de Complementaridade/genética , Regiões Determinantes de Complementaridade/metabolismo , Linfócitos T , Imunoterapia Adotiva/métodos , Transdução de Sinais , Linhagem Celular Tumoral , Receptores de Antígenos de Linfócitos T/metabolismo
5.
Clin Cancer Res ; 29(20): 4139-4152, 2023 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-37540566

RESUMO

PURPOSE: Although CD19 chimeric antigen receptor T cells (CAR-T) therapy has shown remarkable success in B-cell malignancies, a substantial fraction of patients do not obtain a long-term clinical response. This could be influenced by the quality of the individual CAR-T infusion product. To shed some light on this, clinical outcome was correlated to characteristics of CAR-T infusion products. PATIENTS AND METHODS: In this phase II study, patients with B-cell lymphoma (n = 23) or leukemia (n = 1) received one or two infusions of third-generation CD19-directed CAR-Ts (2 × 108/m2). The clinical trial was registered at clinicaltrials.gov: NCT03068416. We investigated the transcriptional profile of individual CD19 CAR-T infusion products using targeted single-cell RNA sequencing and multicolor flow cytometry. RESULTS: Two CAR-T infusions were not better than one in the settings used in this study. As for the CAR-T infusion products, we found that effector-like CD8+CAR-Ts with a high polyfunctionality, high cytotoxic and cytokine production profile, and low dysfunctional signature were associated with clinical response. An extended ex vivo expansion time during CAR-T manufacturing negatively influenced the proportion of effector CD8+CAR-Ts in the infusion product. CONCLUSIONS: We identified cell-intrinsic characteristics of effector CD8+CAR-Ts correlating with response that could be used as an indicator for clinical outcome. The results in the study also serve as a guide to CAR-T manufacturing practices.

6.
Cancer Cell ; 41(6): 1134-1151.e10, 2023 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-37172581

RESUMO

Glioblastomas are aggressive brain tumors that are largely immunotherapy resistant. This is associated with immunosuppression and a dysfunctional tumor vasculature, which hinder T cell infiltration. LIGHT/TNFSF14 can induce high endothelial venules (HEVs) and tertiary lymphoid structures (TLS), suggesting that its therapeutic expression could promote T cell recruitment. Here, we use a brain endothelial cell-targeted adeno-associated viral (AAV) vector to express LIGHT in the glioma vasculature (AAV-LIGHT). We found that systemic AAV-LIGHT treatment induces tumor-associated HEVs and T cell-rich TLS, prolonging survival in αPD-1-resistant murine glioma. AAV-LIGHT treatment reduces T cell exhaustion and promotes TCF1+CD8+ stem-like T cells, which reside in TLS and intratumoral antigen-presenting niches. Tumor regression upon AAV-LIGHT therapy correlates with tumor-specific cytotoxic/memory T cell responses. Our work reveals that altering vascular phenotype through vessel-targeted expression of LIGHT promotes efficient anti-tumor T cell responses and prolongs survival in glioma. These findings have broader implications for treatment of other immunotherapy-resistant cancers.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Glioma , Camundongos , Animais , Glioma/genética , Glioma/terapia , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/terapia , Neoplasias Encefálicas/irrigação sanguínea , Glioblastoma/genética , Fenótipo , Encéfalo , Microambiente Tumoral
7.
Cancer Gene Ther ; 29(11): 1628-1635, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35596069

RESUMO

There is a great demand for improved oncolytic viruses that selectively replicate within cancer cells while sparing normal cells. Here, we describe a novel oncolytic adenovirus, Ixovex-1, that obtains a cancer-selective replication phenotype by modulating the level of expression of the different, alternatively spliced E1B mRNA isoforms. Ixovex-1 is a recombinant adenovirus that carries a single point mutation in the E1B-93R 3' splice acceptor site that results in overexpression of the E1B-156R splice isoform. In this paper, we studied the characteristics of this novel oncolytic adenovirus by validating its in vitro behaviour in a panel of normal cells and cancer cells. We additionally studied its anti-tumour efficacy in vivo. Ixovex-1 significantly inhibited tumour growth and prolonged survival of mice in an immune-deficient lung carcinoma tumour implantation model. In complementation experiments, overexpression of E1B-156R was shown to increase the oncolytic index of both Ad5wt and ONYX-015. In contrast to prior viruses of similar type, Ixovex-1 includes a functional E3B region for better in vivo efficacy. Throughout this study, the Ixovex-1 virus has been proven to be superior in competency compared to a virus with multiple deletions.


Assuntos
Infecções por Adenoviridae , Neoplasias , Terapia Viral Oncolítica , Vírus Oncolíticos , Camundongos , Animais , Adenoviridae/genética , Adenoviridae/metabolismo , Proteínas E1B de Adenovirus/genética , Proteínas E1B de Adenovirus/metabolismo , Terapia Viral Oncolítica/métodos , Vírus Oncolíticos/genética , Vírus Oncolíticos/metabolismo , Neoplasias/genética , Neoplasias/terapia , Replicação Viral/genética
8.
Nat Biomed Eng ; 6(7): 830-841, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35379957

RESUMO

Chimeric antigen receptor T cells (CAR T cells) are effective against haematologic malignancies. However, in solid tumours, their potency is hampered by local immunosuppression and by the heterogeneous expression of the antigen that the CAR targets. Here we show that CAR T cells expressing a pluripotent pro-inflammatory neutrophil-activating protein (NAP) from Helicobacter pylori trigger endogenous bystander T-cell responses against solid cancers. In mice with subcutaneous murine pancreatic ductal adenocarcinomas, neuroblastomas or colon carcinomas, CAR(NAP) T cells led to slower tumour growth and higher survival rates than conventional mouse CAR T cells, regardless of target antigen, tumour type and host haplotype. In tumours with heterogeneous antigen expression, NAP secretion induced the formation of an immunologically 'hot' microenvironment that supported dendritic cell maturation and bystander responses, as indicated by epitope spreading and infiltration of cytotoxic CD8+ T cells targeting tumour-associated antigens other than the CAR-targeted antigen. CAR T cells armed with NAP neither increased off-tumour toxicity nor hampered the efficacy of CAR T cells, and hence may have advantageous translational potential.


Assuntos
Imunoterapia Adotiva , Neoplasias Pancreáticas , Animais , Antígenos de Neoplasias/metabolismo , Linfócitos T CD8-Positivos , Camundongos , Neoplasias Pancreáticas/metabolismo , Microambiente Tumoral , Fatores de Virulência/metabolismo
9.
Neuro Oncol ; 24(3): 398-411, 2022 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-34347079

RESUMO

BACKGROUND: Tumor vessels in glioma are molecularly and functionally abnormal, contributing to treatment resistance. Proteins differentially expressed in glioma vessels can change vessel phenotype and be targeted for therapy. ELTD1 (Adgrl4) is an orphan member of the adhesion G-protein-coupled receptor family upregulated in glioma vessels and has been suggested as a potential therapeutic target. However, the role of ELTD1 in regulating vessel function in glioblastoma is poorly understood. METHODS: ELTD1 expression in human gliomas and its association with patient survival was determined using tissue microarrays and public databases. The role of ELTD1 in regulating tumor vessel phenotype was analyzed using orthotopic glioma models and ELTD1-/- mice. Endothelial cells isolated from murine gliomas were transcriptionally profiled to determine differentially expressed genes and pathways. The consequence of ELTD1 deletion on glioma immunity was determined by treating tumor-bearing mice with PD-1-blocking antibodies. RESULTS: ELTD1 levels were upregulated in human glioma vessels, increased with tumor malignancy, and were associated with poor patient survival. Progression of orthotopic gliomas was not affected by ELTD1 deletion, however, tumor vascular function was improved in ELTD1-/- mice. Bioinformatic analysis of differentially expressed genes indicated increased inflammatory response and decreased proliferation in tumor endothelium in ELTD1-/- mice. Consistent with an enhanced inflammatory response, ELTD1 deletion improved T-cell infiltration in GL261-bearing mice after PD-1 checkpoint blockade. CONCLUSION: Our data demonstrate that ELTD1 participates in inducing vascular dysfunction in glioma, and suggest that targeting of ELTD1 may normalize the vessels and improve the response to immunotherapy.


Assuntos
Neoplasias Encefálicas , Glioma , Receptores Acoplados a Proteínas G/genética , Animais , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Células Endoteliais/metabolismo , Deleção de Genes , Glioma/tratamento farmacológico , Glioma/patologia , Humanos , Camundongos , Camundongos Knockout , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Linfócitos T/metabolismo
10.
Front Immunol ; 12: 724739, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34539661

RESUMO

Glioblastoma is the most common and aggressive brain tumor, which is uniformly lethal due to its extreme invasiveness and the absence of curative therapies. Immune checkpoint inhibitors have not yet proven efficacious for glioblastoma patients, due in part to the low prevalence of tumor-reactive T cells within the tumor microenvironment. The priming of tumor antigen-directed T cells in the cervical lymph nodes is complicated by the shortage of dendritic cells and lack of appropriate lymphatic vessels within the brain parenchyma. However, recent data suggest that naive T cells may also be primed within brain tumor-associated tertiary lymphoid structures. Here, we review the current understanding of the formation of these structures within the central nervous system, and hypothesize that promotion of tertiary lymphoid structures could enhance priming of tumor antigen-targeted T cells and sensitize glioblastomas to cancer immunotherapy.


Assuntos
Neoplasias Encefálicas/imunologia , Sistema Nervoso Central/imunologia , Glioblastoma/imunologia , Linfócitos T/imunologia , Estruturas Linfoides Terciárias/imunologia , Animais , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/patologia , Sistema Nervoso Central/patologia , Glioblastoma/tratamento farmacológico , Glioblastoma/patologia , Humanos , Imunoterapia , Estruturas Linfoides Terciárias/patologia , Microambiente Tumoral
11.
Nat Commun ; 12(1): 4127, 2021 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-34226552

RESUMO

Gliomas are brain tumors characterized by an immunosuppressive microenvironment. Immunostimulatory agonistic CD40 antibodies (αCD40) are in clinical development for solid tumors, but are yet to be evaluated for glioma. Here, we demonstrate that systemic delivery of αCD40 in preclinical glioma models induces the formation of tertiary lymphoid structures (TLS) in proximity of meningeal tissue. In treatment-naïve glioma patients, the presence of TLS correlates with increased T cell infiltration. However, systemic delivery of αCD40 induces hypofunctional T cells and impairs the response to immune checkpoint inhibitors in pre-clinical glioma models. This is associated with a systemic induction of suppressive CD11b+ B cells post-αCD40 treatment, which accumulate in the tumor microenvironment. Our work unveils the pleiotropic effects of αCD40 therapy in glioma and reveals that immunotherapies can modulate TLS formation in the brain, opening up for future opportunities to regulate the immune response.


Assuntos
Antígenos CD40/imunologia , Glioma/tratamento farmacológico , Estruturas Linfoides Terciárias/imunologia , Animais , Antineoplásicos/farmacologia , Linfócitos B/imunologia , Neoplasias Encefálicas/tratamento farmacológico , Antígeno CD11b , Linhagem Celular Tumoral , Citocinas , Feminino , Expressão Gênica , Glioma/patologia , Humanos , Imunoglobulina G/genética , Imunoterapia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Células Mieloides , Fenótipo , Linfócitos T , Microambiente Tumoral/imunologia
12.
Mol Ther Oncolytics ; 21: 356-366, 2021 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-34141872

RESUMO

Oncolytic viruses (OVs) represent promising therapeutic agents for cancer therapy by selective oncolysis and induction of anti-tumor immunity. OVs can be engineered to express tumor-associated antigens and immune-modulating agents to provoke stronger antitumor immunity. Here, we engineered vaccinia virus (VV) and Semliki Forest virus (SFV) to express neuroblastoma-associated antigen disialoganglioside (GD2) and the immune modulator Helicobacter pylori neutrophil-activating protein (NAP) and compared their therapeutic potency. Oncolytic VV did not exhibit any antitumor benefits, whereas SFV was able to delay subcutaneous neuroblastoma (NXS2) tumor growth. Additional expression of the GD2 mimotope (GD2m) by VV-GD2m or SFV-GD2m did not improve their anti-tumor capacity compared to the parent viruses. Further arming these OVs with NAP resulted in contrasting anti-tumor efficacy. VV (VV-GD2m-NAP) significantly improved therapeutic efficacy compared to VV-GD2m, which was also associated with a significantly elevated anti-GD2 antibody, whereas there was no additive antitumor efficacy for SFV-GD2m-NAP compared to SFV-GD2m, nor was the anti-GD2 antibody response improved. Instead, NAP induced higher neutralizing antibodies against SFV. These observations suggest that distinct immune stimulation profiles are elicited when the same immunostimulatory factor is expressed by different OVs. Therefore, careful consideration and detailed characterization are needed when engineering OVs with immune-modulators.

13.
Mol Ther Oncolytics ; 21: 37-46, 2021 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-33869741

RESUMO

Oncolytic virotherapy holds promise of effective immunotherapy against otherwise nonresponsive cancers such as glioblastoma. Our previous findings have shown that although oncolytic Semliki Forest virus (SFV) is effective against various mouse glioblastoma models, its therapeutic potency is hampered by type I interferon (IFN-I)-mediated antiviral signaling. In this study, we constructed a novel IFN-I-resistant SFV construct, SFV-AM6, and evaluated its therapeutic potency in vitro, ex vivo, and in vivo in the IFN-I competent mouse GL261 glioma model. In vitro analysis shows that SFV-AM6 causes immunogenic apoptosis in GL261 cells despite high IFN-I signaling. MicroRNA-124 de-targeted SFV-AM6-124T selectively replicates in glioma cells, and it can infect orthotopic GL261 gliomas when administered intraperitoneally. The combination of SFV-AM6-124T and anti-programmed death 1 (PD1) immunotherapy resulted in increased immune cell infiltration in GL261 gliomas, including an increased tumor-reactive CD8+ fraction. Our results show that SFV-AM6-124T can overcome hurdles of innate anti-viral signaling. Combination therapy with SFV-AM6-124T and anti-PD1 promotes the inflammatory response and improves the immune microenvironment in the GL261 glioma model.

14.
Analyst ; 146(4): 1430-1443, 2021 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-33410834

RESUMO

Selective turn-on luminescence properties are shown by a non-luminescent metalloreceptor upon the addition of phosphate anions in CH3CN and hydrazine in CH3CN/H2O (6/4, v/v). The non-luminescent metalloreceptors [RuII(phen)2(TpH)]2PF6- (RtpH) and [RuII(Phen)2(TpI)]2PF6- (RtpI) {phen = 1,10-phenanthroline; TpH = 2-(2-(4-(pyridin-2-yl)-1H-1,2,3-triazol-1-yl)ethyl)isoindoline-1,3-dione; and TpI = 2-(2-(5-iodo-4-(pyridin-2-yl)-1H-1,2,3-triazol-1-yl)ethyl)isoindoline-1,3-dione} were synthesized and characterized. Both metalloreceptors have excellent sensing properties for phosphate anions (H2PO4- and H2P2O72-) over other anions in CH3CN. The limit of detection (LOD) values were calculated to be 79 nM and 48 nM for H2PO4- upon addition to RtpH and RtpI, respectively. Noncovalent interactions play a key role in the sensing of phosphate anions, among which the halogen-anion interaction showed superior recognition properties over the hydrogen-anion interaction. Comparative electrochemical experiments, 1H NMR titration, 31P NMR titration, and lifetime studies also show that RtpI has better sensing properties, as evidenced by its more drastic emission response to H2PO4- anions compared with RtpH. Moreover, the metalloreceptors showed a remarkable fluorescence increase (at ∼584 nm) upon the addition of hydrazine, without the interference of other amines in CH3CN/H2O (6/4, v/v). Interestingly, fluorescence enhancement was observed within live HeLa cells upon hydrazine addition, which is caused by the efficient photoinduced electron transfer process.


Assuntos
Fosfatos , Rutênio , Ânions , Células HeLa , Humanos , Hidrazinas , Ligantes , Ftalimidas , Piridinas , Triazóis
16.
Oncoimmunology ; 9(1): 1730538, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32231867

RESUMO

CD40-stimulating immunotherapy can elicit potent anti-tumor responses by activating dendritic cells and enhancing T-cell priming. Tumor vessels orchestrate T-cell recruitment during immune response, but the effect of CD40-stimulating immunotherapy on tumor endothelial cells has not been evaluated. Here, we have investigated how tumor endothelial cells transcriptionally respond to CD40-stimulating immunotherapy by isolating tumor endothelial cells from agonistic CD40 mAb- or isotype-treated mice bearing B16-F10 melanoma, and performing RNA-sequencing. Gene set enrichment analysis revealed that agonistic CD40 mAb therapy increased interferon (IFN)-related responses in tumor endothelial cells, including up-regulation of the immunosuppressive enzyme Indoleamine 2, 3-Dioxygenase 1 (IDO1). IDO1 was predominantly expressed in endothelial cells within the tumor microenvironment, and its expression in tumor endothelium was positively correlated to T-cell infiltration and to increased intratumoral expression of IFNγ. In vitro, endothelial cells up-regulated IDO1 in response to T-cell-derived IFNγ, but not in response to CD40-stimulation. Combining agonistic CD40 mAb therapy with the IDO1 inhibitor epacadostat delayed tumor growth in B16-F10 melanoma, associated with increased activation of tumor-infiltrating T-cells. Hereby, we show that the tumor endothelial cells up-regulate IDO1 upon CD40-stimulating immunotherapy in response to increased IFNγ-secretion by T-cells, revealing a novel immunosuppressive feedback mechanism whereby tumor vessels limit T-cell activation.


Assuntos
Indolamina-Pirrol 2,3,-Dioxigenase , Melanoma Experimental , Animais , Células Endoteliais/metabolismo , Endotélio/metabolismo , Imunoterapia , Indolamina-Pirrol 2,3,-Dioxigenase/genética , Melanoma Experimental/tratamento farmacológico , Camundongos , Microambiente Tumoral , Regulação para Cima
17.
Cell Death Dis ; 11(1): 48, 2020 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-31969562

RESUMO

Oncolytic viruses have the potential to induce immunogenic cell death (ICD) that may provoke potent and long-lasting anti-cancer immunity. Here we aimed to characterize the ICD-inducing ability of wild-type Adenovirus (Ad), Semliki Forest virus (SFV) and Vaccinia virus (VV). We did so by investigating the cell death and immune-activating properties of virus-killed tumor cells. Ad-infection of tumor cells primarily activates autophagy, but also activate events of necroptotic and pyroptotic cell death. SFV infection on the other hand primarily activates immunogenic apoptosis while VV activates necroptosis. All viruses mediated lysis of tumor cells leading to the release of danger-associated molecular patterns, triggering of phagocytosis and maturation of dendritic cells (DCs). However, only SFV-infected tumor cells triggered significant T helper type 1 (Th1)-cytokine release by DCs and induced antigen-specific T-cell activation. Our results elucidate cell death processes activated upon Ad, SFV, and VV infection and their potential to induce T cell-mediated anti-tumor immune responses. This knowledge provides important insight for the choice and design of therapeutically successful virus-based immunotherapies.


Assuntos
Adenoviridae/fisiologia , Morte Celular Imunogênica , Imunoterapia , Neoplasias/imunologia , Neoplasias/terapia , Terapia Viral Oncolítica , Vírus da Floresta de Semliki/fisiologia , Vaccinia virus/fisiologia , Animais , Apoptose , Autofagia , Linhagem Celular , Sobrevivência Celular , Células Dendríticas/metabolismo , Epitopos/imunologia , Humanos , Inflamassomos/metabolismo , Necroptose , Neoplasias/patologia , Linfócitos T/imunologia
18.
Cell Mol Life Sci ; 77(9): 1745-1770, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31690961

RESUMO

Tumor vascularization occurs through several distinct biological processes, which not only vary between tumor type and anatomic location, but also occur simultaneously within the same cancer tissue. These processes are orchestrated by a range of secreted factors and signaling pathways and can involve participation of non-endothelial cells, such as progenitors or cancer stem cells. Anti-angiogenic therapies using either antibodies or tyrosine kinase inhibitors have been approved to treat several types of cancer. However, the benefit of treatment has so far been modest, some patients not responding at all and others acquiring resistance. It is becoming increasingly clear that blocking tumors from accessing the circulation is not an easy task to accomplish. Tumor vessel functionality and gene expression often differ vastly when comparing different cancer subtypes, and vessel phenotype can be markedly heterogeneous within a single tumor. Here, we summarize the current understanding of cellular and molecular mechanisms involved in tumor angiogenesis and discuss challenges and opportunities associated with vascular targeting.


Assuntos
Inibidores da Angiogênese/uso terapêutico , Neoplasias/patologia , Neovascularização Patológica/patologia , Animais , Humanos , Neoplasias/irrigação sanguínea , Neoplasias/tratamento farmacológico , Neovascularização Patológica/tratamento farmacológico , Transdução de Sinais
19.
Oncoimmunology ; 7(3): e1395126, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29399392

RESUMO

Accumulating evidence support an important role for endogenous bystander dendritic cells (DCs) in the efficiency of autologous patient-derived DC-vaccines, as bystander DCs take up material from vaccine-DCs, migrate to draining lymph node and initiate antitumor T-cell responses. We examined the possibility of using allogeneic DCs as vaccine-DCs to activate bystander immune cells and promote antigen-specific T-cell responses. We demonstrate that human DCs matured with polyI:C, R848 and IFN-γ (denoted COMBIG) in combination with an infection-enhanced adenovirus vector (denoted Ad5M) exhibit a pro-inflammatory state. COMBIG/Ad5M-matured allogeneic DCs (alloDCs) efficiently activated T-cells and NK-cells in allogeneic co-culture experiments. The secretion of immunostimulatory factors during the co-culture promoted the maturation of bystander-DCs, which efficiently cross-presented a model-antigen to activate antigen-specific CD8+ T-cells in vitro. We propose that alloDCs, in combination with Ad5M as loading vehicle, may be a cost-effective and logistically simplified DC vaccination strategy to induce anti-tumor immune responses in cancer patients.

20.
Oncoimmunology ; 7(3): e1397250, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29399398

RESUMO

Autologous patient-derived dendritic cells (DCs) modified ex vivo to present tumor-associated antigens (TAAs) are frequently used as cancer vaccines. However, apart from the stringent logistics in producing DCs on a patient basis, accumulating evidence indicate that ex vivo engineered DCs are poor in migration and in fact do not directly present TAA epitopes to naïve T cells in vivo. Instead, it is proposed that bystander host DCs take up material from vaccine-DCs, migrate and subsequently initiate antitumor T-cell responses. We used mouse models to examine the possibility of using pro-inflammatory allogeneic DCs (alloDCs) to activate host DCs and enable them to promote antigen-specific T-cell immunity. We found that alloDCs were able to initiate host DC activation and migration to draining lymph node leading to T-cell activation. The pro-inflammatory milieu created by alloDCs also led to recruitment of NK cells and neutrophils at the site of injection. Vaccination with alloDCs combined with Ad5M(gp100), an infection-enhanced adenovirus encoding the human melanoma-associated antigen gp100 resulted in generation of CD8+ T cells with a T-cell receptor (TCR) specific for the gp10025-33 epitope (gp100-TCR+). Ad5M(gp100)-alloDC vaccination in combination with transfer of gp100-specific pmel-1 T cells resulted in prolonged survival of B16-F10 melanoma-bearing mice and altered the composition of the tumor microenvironment (TME). We hereby propose that alloDCs together with TAA- or neoepitope-encoding Ad5M can become an "off-the-shelf" cancer vaccine, which can reverse the TME-induced immunosuppression and induce host cellular anti-tumor immune responses in patients without the need of a time-consuming preparation step of autologous DCs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...