Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Antimicrob Chemother ; 79(1): 112-122, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-37966053

RESUMO

BACKGROUND: The synthetic antimicrobial peptide, PaDBS1R1, has been reported as a powerful anti-Klebsiella pneumoniae antimicrobial. However, there is only scarce knowledge about whether K. pneumoniae could develop resistance against PaDBS1R1 and which resistance mechanisms could be involved. OBJECTIVES: Identify via label-free shotgun proteomics the K. pneumoniae resistance mechanisms developed against PaDBS1R1. METHODS: An adaptive laboratory evolution experiment was performed to obtain a PaDBS1R1-resistant K. pneumoniae lineage. Antimicrobial susceptibility was determined through microdilution assay. Modifications in protein abundances between the resistant and sensitive lineages were measured via label-free quantitative shotgun proteomics. Enriched Gene Ontology terms and KEGG pathways were identified through over-representation analysis. Data are available via ProteomeXchange with identifier PXD033020. RESULTS: K. pneumoniae ATCC 13883 parental strain challenged with increased subinhibitory PaDBS1R1 concentrations allowed the PaDBS1R1-resistant K. pneumoniae lineage to emerge. Proteome comparisons between PaDBS1R1-resistant K. pneumoniae and PaDBS1R1-sensitive K. pneumoniae under PaDBS1R1-induced stress conditions enabled the identification and quantification of 1702 proteins, out of which 201 were differentially abundant proteins (DAPs). The profiled DAPs comprised 103 up-regulated proteins (adjusted P value < 0.05, fold change ≥ 2) and 98 down-regulated proteins (adjusted P value < 0.05, fold change ≤ 0.5). The enrichment analysis suggests that PhoPQ-guided LPS modifications and CpxRA-dependent folding machinery could be relevant resistance mechanisms against PaDBS1R1. CONCLUSIONS: Based on experimental evolution and a label-free quantitative shotgun proteomic approach, we showed that K. pneumoniae developed resistance against PaDBS1R1, whereas PhoPQ-guided LPS modifications and CpxRA-dependent folding machinery appear to be relevant resistance mechanisms against PaDBS1R1.


Assuntos
Anti-Infecciosos , Infecções por Klebsiella , Humanos , Antibacterianos/farmacologia , Klebsiella pneumoniae/genética , Peptídeos Antimicrobianos , Proteômica , Lipopolissacarídeos , Anti-Infecciosos/farmacologia , Testes de Sensibilidade Microbiana
2.
Biochim Biophys Acta Gen Subj ; 1867(1): 130265, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36280021

RESUMO

BACKGROUND: Some cationic and amphiphilic α-helical segments of proteins adsorb to prokaryotic membranes when synthesized as individual polypeptide sequences, resulting in broad and potent antimicrobial activity. However, amphiphilicity, a determinant physicochemical property for peptide-membrane interactions, can also be observed in some ß-sheets. METHODS: The software Kamal was used to scan the human reference proteome for short (7-11 amino acid residues) cationic and amphiphilic protein segments with the characteristic periodicity of ß-sheets. Some of the uncovered peptides were chemically synthesized, and antimicrobial assays were conducted. Biophysical techniques were used to probe the molecular interaction of one peptide with phospholipid vesicles, lipopolysaccharides (LPS) and the bacterium Escherichia coli. RESULTS: Thousands of compatible segments were found in human proteins, five were synthesized, and three presented antimicrobial activity in the micromolar range. Hs10, a nonapeptide fragment of the Complement C3 protein, could inhibit only the growth of tested Gram-negative microorganisms, presenting also little cytotoxicity to human fibroblasts. Hs10 interacted with LPS while transitioning from an unstructured segment to a ß-sheet and increased the hydrodynamic radius of LPS particles. This peptide also promoted morphological alterations in E. coli cells. CONCLUSIONS: Data presented herein introduce yet another molecular template to probe proteins in search for encrypted membrane-active segments and demonstrates that, using this approach, short peptides with low cytotoxicity and high selectivity to prokaryotic cells might be obtained. GENERAL SIGNIFICANCE: This work widens the biotechnological potential of the human proteome as a source of antimicrobial peptides with application in human health.


Assuntos
Anti-Infecciosos , Escherichia coli , Humanos , Escherichia coli/metabolismo , Peptídeos Antimicrobianos , Lipopolissacarídeos/farmacologia , Proteoma , Bactérias Gram-Negativas/metabolismo , Peptídeos/química
3.
PLoS One ; 14(8): e0220656, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31386688

RESUMO

Following the treads of our previous works on the unveiling of bioactive peptides encrypted in plant proteins from diverse species, the present manuscript reports the occurrence of four proof-of-concept intragenic antimicrobial peptides in human proteins, named Hs IAPs. These IAPs were prospected using the software Kamal, synthesized by solid phase chemistry, and had their interactions with model phospholipid vesicles investigated by differential scanning calorimetry and circular dichroism. Their antimicrobial activity against bacteria, yeasts and filamentous fungi was determined, along with their cytotoxicity towards erythrocytes. Our data demonstrates that Hs IAPs are capable to bind model membranes while attaining α-helical structure, and to inhibit the growth of microorganisms at concentrations as low as 1µM. Hs02, a novel sixteen residue long internal peptide (KWAVRIIRKFIKGFIS-NH2) derived from the unconventional myosin 1h protein, was further investigated in its capacity to inhibit lipopolysaccharide-induced release of TNF-α in murine macrophages. Hs02 presented potent anti-inflammatory activity, inhibiting the release of TNF-α in LPS-primed cells at the lowest assayed concentration, 0.1 µM. A three-dimensional solution structure of Hs02 bound to DPC micelles was determined by Nuclear Magnetic Resonance. Our work exemplifies how the human genome can be mined for molecules with biotechnological potential in human health and demonstrates that IAPs are actual alternatives to antimicrobial peptides as pharmaceutical agents or in their many other putative applications.


Assuntos
Anti-Infecciosos/síntese química , Anti-Inflamatórios/síntese química , Peptídeos/farmacologia , Animais , Eritrócitos/efeitos dos fármacos , Humanos , Lipossomos/metabolismo , Macrófagos/metabolismo , Camundongos , Micelas , Peptídeos/análise , Peptídeos/síntese química , Peptídeos/metabolismo , Conformação Proteica em alfa-Hélice , Proteínas/química , Técnicas de Síntese em Fase Sólida , Fator de Necrose Tumoral alfa/metabolismo
4.
Microorganisms ; 6(2)2018 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-29710773

RESUMO

Protease inhibitors have a broad biotechnological application ranging from medical drugs to anti-microbial agents. The Inga laurina trypsin inhibitor (ILTI) previously showed a great in vitro inhibitory effect under the adherence of Staphylococcus species, being a strong candidate for use as an anti-biofilm agent. Nevertheless, this is found in small quantities in its sources, which impairs its utilization at an industrial scale. Within this context, heterologous production using recombinant microorganisms is one of the best options to scale up the recombinant protein production. Thus, this work aimed at utilizing Komagataella phaffii to produce recombinant ILTI. For this, the vector pPIC9K+ILTI was constructed and inserted into the genome of the yeast K. phaffii, strain GS115. The protein expression was highest after 48 h using methanol 1%. A matrix-assisted laser desorption ionization⁻time-of-flight (MALDI⁻TOF) analysis was performed to confirm the production of the recombinant ILTI and its activity was investigated trough inhibitory assays using the synthetic substrate Nα-Benzoyl-D,L-arginine p-nitroanilide hydrochloride (BAPNA). Finally, recombinant ILTI (rILTI) was used in assays, showing that there was no significant difference between native and recombinant ILTI in its inhibitory activity in biofilm formation. Anti-tumor assay against Ehrlich ascites tumor (EAT) cells showed that rILTI has a potential anti-tumoral effect, showing the same effect as Melittin when incubated for 48 h in concentrations above 25 µg/mL. All together the results suggests broad applications for rILTI.

5.
Front Microbiol ; 8: 2295, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29209301

RESUMO

HsAFP1, a plant defensin isolated from coral bells (Heuchera sanguinea), is characterized by broad-spectrum antifungal activity. Previous studies indicated that HsAFP1 binds to specific fungal membrane components, which had hitherto not been identified, and induces mitochondrial dysfunction and cell membrane permeabilization. In this study, we show that HsAFP1 reversibly interacts with the membrane phospholipid phosphatidic acid (PA), which is a precursor for the biosynthesis of other phospholipids, and to a lesser extent with various phosphatidyl inositol phosphates (PtdInsP's). Moreover, via reverse ELISA assays we identified two basic amino acids in HsAFP1, namely histidine at position 32 and arginine at position 52, as well as the phosphate group in PA as important features enabling this interaction. Using a HsAFP1 variant, lacking both amino acids (HsAFP1[H32A][R52A]), we showed that, as compared to the native peptide, the ability of this variant to bind to PA and PtdInsP's is reduced (≥74%) and the antifungal activity of the variant is reduced (≥2-fold), highlighting the link between PA/PtdInsP binding and antifungal activity. Using fluorescently labelled HsAFP1 in confocal microscopy and flow cytometry assays, we showed that HsAFP1 accumulates at the cell surface of yeast cells with intact membranes, most notably at the buds and septa. The resulting HsAFP1-induced membrane permeabilization is likely to occur after HsAFP1's internalization. These data provide novel mechanistic insights in the mode of action of the HsAFP1 plant defensin.

6.
Front Microbiol ; 8: 2051, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29104569

RESUMO

Public health problems are associated with device-associated biofilm infections, with Candida albicans being the major fungal pathogen. We previously identified potent antibiofilm combination treatment in which the antifungal plant defensin HsAFP1 is co-administered with caspofungin, the preferred antimycotic to treat such infections. In this study, we identified the smallest linear HsAFP1-derived peptide that acts synergistically with caspofungin or anidulafungin against C. albicans as HsLin06_18, a 19-mer peptide derived from the C-terminal part of HsAFP1. The [caspofungin + HsLin06_18] combination significantly reduced in vitro biofilm formation of Candida glabrata and C. albicans on catheters, as well as biofilm formation of a caspofungin-resistant C. albicans strain. The [caspofungin + HsLin06_18] combination was not cytotoxic and reduced biofilm formation of C. albicans in vivo using a subcutaneous rat catheter model, as compared to control treatment. Mode of action research on the [caspofungin + HsLin06_18] combination pointed to caspofungin-facilitated HsLin06_18 internalization and immediate membrane permeabilization. All these findings point to broad-spectrum antibiofilm activity of a combination of HsLin06_18 and caspofungin.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...