Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pathogens ; 10(6)2021 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-34208761

RESUMO

Brucellosis is a highly contagious zoonosis that occurs worldwide. Whole-genome sequencing (WGS) has become a widely accepted molecular typing method for outbreak tracing and genomic epidemiology of brucellosis. Twenty-nine Brucella spp. (eight B. abortus biovar 1 and 21 B. melitensis biovar 3) were isolated from lymph nodes, milk, and fetal abomasal contents of infected cattle, buffaloes, sheep, and goats originating from nine districts in Egypt. The isolates were identified by microbiological methods and matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS). Differentiation and genotyping were confirmed using multiplex PCR. Illumina MiSeq® was used to sequence the 29 Brucella isolates. Using MLST typing, ST11 and ST1 were identified among B. melitensis and B. abortus, respectively. Brucella abortus and B. melitensis isolates were divided into two main clusters (clusters 1 and 2) containing two and nine distinct genotypes by core-genome SNP analysis, respectively. The genotypes were irregularly distributed over time and space in the study area. Both Egyptian B. abortus and B. melitensis isolates proved to be genomically unique upon comparison with publicly available sequencing from strains of neighboring Mediterranean, African, and Asian countries. The antimicrobial resistance mechanism caused by mutations in rpoB, gyrA, and gyrB genes associated with rifampicin and ciprofloxacin resistance were identified. To the best of our knowledge, this is the first study investigating the epidemiology of Brucella isolates from livestock belonging to different localities in Egypt based on whole genome analysis.

2.
Microorganisms ; 7(12)2019 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-31766725

RESUMO

Brucellosis is a highly contagious zoonosis worldwide with economic and public health impacts. The aim of the present study was to identify Brucella (B.) spp. isolated from animal populations located in different districts of Egypt and to determine their antimicrobial resistance. In total, 34-suspected Brucella isolates were recovered from lymph nodes, milk, and fetal abomasal contents of infected cattle, buffaloes, sheep, and goats from nine districts in Egypt. The isolates were identified by microbiological methods and matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS). Differentiation and genotyping were confirmed using multiplex PCR for B. abortus, Brucella melitensis, Brucella ovis, and Brucella suis (AMOS) and Bruce-ladder PCR. Antimicrobial susceptibility testing against clinically used antimicrobial agents (chloramphenicol, ciprofloxacin, erythromycin, gentamicin, imipenem, rifampicin, streptomycin, and tetracycline) was performed using E-Test. The antimicrobial resistance-associated genes and mutations in Brucella isolates were confirmed using molecular tools. In total, 29 Brucella isolates (eight B. abortus biovar 1 and 21 B. melitensis biovar 3) were identified and typed. The resistance of B. melitensis to ciprofloxacin, erythromycin, imipenem, rifampicin, and streptomycin were 76.2%, 19.0%, 76.2%, 66.7%, and 4.8%, respectively. Whereas, 25.0%, 87.5%, 25.0%, and 37.5% of B. abortus were resistant to ciprofloxacin, erythromycin, imipenem, and rifampicin, respectively. Mutations in the rpoB gene associated with rifampicin resistance were identified in all phenotypically resistant isolates. Mutations in gyrA and gyrB genes associated with ciprofloxacin resistance were identified in four phenotypically resistant isolates of B. melitensis. This is the first study highlighting the antimicrobial resistance in Brucella isolated from different animal species in Egypt. Mutations detected in genes associated with antimicrobial resistance unravel the molecular mechanisms of resistance in Brucella isolates from Egypt. The mutations in the rpoB gene in phenotypically resistant B. abortus isolates in this study were reported for the first time in Egypt.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...