Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nano Lett ; 21(10): 4145-4151, 2021 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-33956449

RESUMO

HgTe nanocrystals (NCs) enable broadly tunable infrared absorption, now commonly used to design light sensors. This material tends to grow under multipodic shapes and does not present well-defined size distributions. Such point generates traps and reduces the particle packing, leading to a reduced mobility. It is thus highly desirable to comprehensively explore the effect of the shape on their performance. Here, we show, using a combination of electron tomography and tight binding simulations, that the charge dissociation is strong within HgTe NCs, but poorly shape dependent. Then, we design a dual-gate field-effect-transistor made of tripod HgTe NCs and use it to generate a planar p-n junction, offering more tunability than its vertical geometry counterpart. Interestingly, the performance of the tripods is higher than sphere ones, and this can be correlated with a stronger Te excess in the case of sphere shapes which is responsible for a higher hole trap density.

2.
J Am Chem Soc ; 143(3): 1435-1446, 2021 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-33440926

RESUMO

We report the synthesis of colloidal CsPbX3-Pb4S3Br2 (X = Cl, Br, I) nanocrystal heterostructures, providing an example of a sharp and atomically resolved epitaxial interface between a metal halide perovskite and a non-perovskite lattice. The CsPbBr3-Pb4S3Br2 nanocrystals are prepared by a two-step direct synthesis using preformed subnanometer CsPbBr3 clusters. Density functional theory calculations indicate the creation of a quasi-type II alignment at the heterointerface as well as the formation of localized trap states, promoting ultrafast separation of photogenerated excitons and carrier trapping, as confirmed by spectroscopic experiments. Postsynthesis reaction with either Cl- or I- ions delivers the corresponding CsPbCl3-Pb4S3Br2 and CsPbI3-Pb4S3Br2 heterostructures, thus enabling anion exchange only in the perovskite domain. An increased structural rigidity is conferred to the perovskite lattice when it is interfaced with the chalcohalide lattice. This is attested by the improved stability of the metastable γ phase (or "black" phase) of CsPbI3 in the CsPbI3-Pb4S3Br2 heterostructure.

3.
Nanoscale ; 12(36): 18978-18986, 2020 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-32915178

RESUMO

We synthesized strongly anisotropic CsPbBr3 nanocrystals with very narrow emission and absorption lines associated to confinement effects along one or two dimensions, called respectively nanoplatelets (NPLs) and nanosticks (NSTs). Transmission Electron Microscopy (TEM) images, absorption and photoluminescence (PL) spectra taken at low temperature are very precise tools to determine which kind of confinement has to be considered and to deduce the shape, the size and the thickness of nanocrystals under focus. We show that the energy of the band-edge absorption and PL peaks versus the inverse of the square of the NPL thickness has a linear behaviour from 11 monolayers (MLs) i.e. a thickness of 6.38 nm, until 4 MLs (2.32 nm) showing that self-energy correction compensates the increase of the exciton binding energy in thin NPLs as already observed in Cadmium chalcogenides-based NPLs. We also show that slight changes in the morphology of NSTs leads to a very drastic modification of their absorption spectra. Time-resolved PL of NSTs has a non-monotonous behaviour with temperature. At 5 K, a quasi-single exponential with a lifetime of 80 ps is obtained; at intermediate temperature, the decay is bi-exponential and at 150 K, a quasi-single exponential decay is recovered (≈0.4 ns). For NSTs, the exciton interaction with LO phonons governs the broadening of the absorption and PL peaks at room temperature and is stronger than in chalcogenides quantum dots and NPLs.

4.
J Am Chem Soc ; 142(22): 10198-10211, 2020 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-32374173

RESUMO

We report the colloidal synthesis of a series of surfactant-stabilized lead chalcohalide nanocrystals. Our work is mainly focused on Pb4S3Br2, a chalcohalide phase unknown to date that does not belong to the ambient-pressure PbS-PbBr2 phase diagram. The Pb4S3Br2 nanocrystals herein feature a remarkably narrow size distribution (with a size dispersion as low as 5%), a good size tunability (from 7 to ∼30 nm), an indirect bandgap, photoconductivity (responsivity = 4 ± 1 mA/W), and stability for months in air. A crystal structure is proposed for this new material by combining the information from 3D electron diffraction and electron tomography of a single nanocrystal, X-ray powder diffraction, and density functional theory calculations. Such a structure is closely related to that of the recently discovered high-pressure chalcohalide Pb4S3I2 phase, and indeed we were able to extend our synthesis scheme to Pb4S3I2 colloidal nanocrystals, whose structure matches the one that has been published for the bulk. Finally, we could also prepare nanocrystals of Pb3S2Cl2, which proved to be a structural analogue of the recently reported bulk Pb3Se2Br2 phase. It is remarkable that one high-pressure structure (for Pb4S3I2) and two metastable structures that had not yet been reported (for Pb4S3Br2 and Pb3S2Cl2) can be prepared on the nanoscale by wet-chemical approaches. This highlights the important role of colloidal chemistry in the discovery of new materials and motivates further exploration into metal chalcohalide nanocrystals.

5.
ACS Appl Mater Interfaces ; 12(19): 22058-22065, 2020 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-32292032

RESUMO

Now that colloidal nanocrystals (NCs) have been integrated as green and red sources for liquid crystal displays, the next challenge for quantum dots is their use in electrically driven light-emitting diodes (LEDs). Among various colloidal NCs, nanoplatelets (NPLs) have appeared as promising candidates for light-emitting devices because their two-dimensional shape allows a narrow luminescence spectrum, directional emission, and high light extraction. To reach high quantum efficiency, it is critical to grow core/shell structures. High temperature growth of the shells seems to be a better strategy than previously reported low-temperature approaches to obtain bright NPLs. Here, we synthesize CdSe/CdZnS core/shell NPLs whose shell alloy content is tuned to optimize the charge injection in the LED structure. The obtained LED has exceptionally low turn-on voltage, long-term stability (>3100 h at 100 cd m-2), external quantum efficiency above 5%, and luminance up to 35,000 cd m-2. We study the low-temperature performance of the LED and find that there is a delay of droop in terms of current density as temperature decreases. In the last part of the paper, we design a large LED (56 mm2 emitting area) and test its potential for LiFi-like communication. In such an approach, the LED is not only a lightning source but also used to transmit a communication signal to a PbS quantum dot solar cell used as a broadband photodetector. Operating conditions compatible with both lighting and information transfer have been identified. This work paves the way toward an all NC-based communication setup.

6.
Chem Mater ; 32(24): 10641-10652, 2020 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-33384476

RESUMO

Various strategies have been proposed to engineer the band gap of metal halide perovskite nanocrystals (NCs) while preserving their structure and composition and thus ensuring spectral stability of the emission color. An aspect that has only been marginally investigated is how the type of surface passivation influences the structural/color stability of AMX3 perovskite NCs composed of two different M2+ cations. Here, we report the synthesis of blue-emitting Cs-oleate capped CsCd x Pb1-x Br3 NCs, which exhibit a cubic perovskite phase containing Cd-rich domains of Ruddlesden-Popper phases (RP phases). The RP domains spontaneously transform into pure orthorhombic perovskite ones upon NC aging, and the emission color of the NCs shifts from blue to green over days. On the other hand, postsynthesis ligand exchange with various Cs-carboxylate or ammonium bromide salts, right after NC synthesis, provides monocrystalline NCs with cubic phase, highlighting the metastability of RP domains. When NCs are treated with Cs-carboxylates (including Cs-oleate), most of the Cd2+ ions are expelled from NCs upon aging, and the NCs phase evolves from cubic to orthorhombic and their emission color changes from blue to green. Instead, when NCs are coated with ammonium bromides, the loss of Cd2+ ions is suppressed and the NCs tend to retain their blue emission (both in colloidal dispersions and in electroluminescent devices), as well as their cubic phase, over time. The improved compositional and structural stability in the latter cases is ascribed to the saturation of surface vacancies, which may act as channels for the expulsion of Cd2+ ions from NCs.

7.
Nano Lett ; 19(6): 3981-3986, 2019 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-31059646

RESUMO

The gating of nanocrystal films is currently driven by two approaches: either the use of a dielectric such as SiO2 or the use of electrolyte. SiO2 allows fast bias sweeping over a broad range of temperatures but requires a large operating bias. Electrolytes, thanks to large capacitances, lead to the significant reduction of operating bias but are limited to slow and quasi-room-temperature operation. None of these operating conditions are optimal for narrow-band-gap nanocrystal-based phototransistors, for which the necessary large-capacitance gate has to be combined with low-temperature operation. Here, we explore the use of a LaF3 ionic glass as a high-capacitance gating alternative. We demonstrate for the first time the use of such ionic glasses to gate thin films made of HgTe and PbS nanocrystals. This gating strategy allows operation in the 180 to 300 K range of temperatures with capacitance as high as 1 µF·cm-2. We unveil the unique property of ionic glass gate to enable the unprecedented tunability of both magnitude and dynamics of the photocurrent thanks to high charge-doping capability within an operating temperature window relevant for infrared photodetection. We demonstrate that by carefully choosing the operating gate bias, the signal-to-noise ratio can be improved by a factor of 100 and the time response accelerated by a factor of 6. Moreover, the good transparency of LaF3 substrate allows back-side illumination in the infrared range, which is highly valuable for the design of phototransistors.

8.
Nanoscale ; 11(9): 3905-3915, 2019 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-30758021

RESUMO

We demonstrate the growth of 2D nanoplatelets (NPLs) made of a HgTe/CdS heterostructure, with an optical absorption reaching the shortwave infrared range. The material is an interesting platform to investigate the effect of dimensionality (0D vs. 2D) and confinement on the electronic spectrum and carrier dynamics in colloidal materials. We bring consistent evidence for the p-type nature of this material from transport and photoemission measurements. The majority carrier dynamics probed using pump-probe photoemission is found to be mostly dependent on the presence of a confinement barrier at the surface rather than on the material dimensionality. The minority carrier, on the other hand, is strongly affected by the material shape showing a longer lived minority carrier in 2D NPLs compared to their 0D equivalent with a similar band gap. Finally, we test the potential of this material for photodetection in the short-wave infrared range (SWIR) and show that fast photoresponse and detectivity reaching 109 Jones at room temperature can be achieved.

9.
Front Chem ; 6: 575, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30547026

RESUMO

Infrared (IR) sensors based on epitaxially grown semiconductors face two main challenges which are their prohibitive cost and the difficulty to rise the operating temperature. The quest for alternative technologies which will tackle these two difficulties requires the development of new IR active materials. Over the past decade, significant progresses have been achieved. In this perspective, we summarize the current state of the art relative to nanocrystal based IR sensing and stress the main materials, devices and industrial challenges which will have to be addressed over the 5 next years.

10.
Nanoscale ; 10(14): 6393-6401, 2018 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-29560979

RESUMO

All inorganic CsPbX3 (X = Cl, Br, I) nanocrystals (NCs) belong to the novel class of confined metal-halide perovskites which are currently arousing enthusiasm and stimulating huge activity across several fields of optoelectronics due to outstanding properties. A deep knowledge of the band-edge excitonic properties of these materials is thus crucial to further optimize their performances. Here, high-resolution photoluminescence (PL) spectroscopy of single bromide-based NCs reveals the exciton fine structure in the form of sharp peaks that are linearly polarized and grouped in doublets or triplets, which directly mirror the adopted crystalline structure, tetragonal (D4h symmetry) or orthorhombic (D2h symmetry). Intelligible equations are found that show how the fundamental parameters (spin-orbit coupling, ΔSO, crystal field term, T, and electron-hole exchange energy, J) rule the energy spacings in doublets and triplets. From experimental data, fine estimations of each parameter are obtained. The analysis of the absorption spectra of an ensemble of NCs with a "quasi-bulk" behavior leads to ΔSO = 1.20 ± 0.06 eV and T = -0.34 ± 0.05 eV in CsPbBr3. The study of individual luminescence responses of NCs having sizes comparable to the exciton Bohr diameter, 7 nm, allows us to estimate the value of J to be around ≈3 meV in both tetragonal and orthorhombic phases. This value is already enhanced by confinement.

11.
Nanoscale ; 10(4): 2154-2161, 2018 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-29327007

RESUMO

Studies of the mechanical contact between nanometer-scale particles provide fundamental insights into the mechanical properties of materials and the validity of contact laws at the nanoscale which are still under debate for contact surfaces approaching atomic dimensions. Using in situ Brillouin light scattering under high pressure, we show that effective medium theories successfully predict the macroscopic sound velocities in nanopowders if one takes into account the cementation of the contacts Our measurements suggest the relevance of the continuum approach and effective medium theories to describe the contact between nanoparticles of diameters as small as 4 nm, i.e. with radii of contact of a few angstroms. In particular, we demonstrate that the mechanical properties of nanopowders strongly depend on the surface state of the nanoparticles. The presence of molecular adsorbates modifies significantly the contact laws.

12.
Nanoscale ; 9(36): 13563-13574, 2017 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-28876014

RESUMO

Multimetallic nano-alloys display a structure and consequently physicochemical properties evolving in a reactive environment. Following and understanding this evolution is therefore crucial for future applications in gas sensing and heterogeneous catalysis. In view hereof, the structural evolution of oxidized Ag25In75 bimetallic nanoparticles under varying H2 partial pressures (PH2) and substrate temperatures (Ts) has been investigated in real-time through environmental transmission microscopy (E-TEM) while maintaining the atomic resolution. Small Ag25In75 bimetallic nanoparticles, produced by laser vaporization, are found (after air transfer) to contain an indium-oxide shell surrounding a silver-rich alloyed phase. For high PH2 and Ts, the direct reduction of the indium oxide shell, immediately followed by the melting or the diffusion onto the carbon substrate of the reduced indium atoms, is found to be the dominant mechanism. This reduction is concomitant with the growth of the core, indicating a partial diffusion of indium atoms from the shell towards the particle volume. The "surviving" particles therefore consist of a silver-indium alloy, very stable and remarkably resistant against oxidation contrary to native clusters. Interestingly, in the (PH2, Ts) space, the transition from "soft" (core-shell particles for low (PH2, Ts) values) to "strong" reduction conditions (silver-rich alloys for high (PH2, Ts) products) defines an intermediate domain where the preferred formation of Janus structures is detected. These results are discussed in terms of thermodynamic driving forces in relation to alloying and interface energies. This work shows the potential of high-resolution ETEM for unravelling the mechanisms of nanoparticle reorganization in a chemically reactive environment.

13.
ACS Nano ; 10(12): 11266-11279, 2016 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-28024347

RESUMO

Homodimers of noble metal nanocubes form model plasmonic systems where the localized plasmon resonances sustained by each particle not only hybridize but also coexist with excitations of a different nature: surface plasmon polaritons confined within the Fabry-Perot cavity delimited by facing cube surfaces (i.e., gap plasmons). Destructive interference in the strong coupling between one of these highly localized modes and the highly radiating longitudinal dipolar plasmon of the dimer is responsible for the formation of a Fano resonance profile and the opening of a spectral window of anomalous transparency for the exciting light. We report on the clear experimental evidence of this effect in the case of 50 nm silver and 160 nm gold nanocube dimers studied by spatial modulation spectroscopy at the single particle level. A numerical study based on a plasmon mode analysis leads us to unambiguously identify the main cavity mode involved in this process and especially the major role played by its symmetry. The Fano depletion dip is red-shifted when the gap size is decreasing. It is also blue-shifted and all the more pronounced that the cube edge rounding is large. Combining nanopatch antenna and plasmon hybridization descriptions, we quantify the key role of the face-to-face distance and the cube edge morphology on the spectral profile of the transparency dip.

14.
Phys Chem Chem Phys ; 18(5): 4121-33, 2016 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-26780585

RESUMO

The optical absorption of bimetallic nanoparticles M-Ag involving silver as an active plasmonic compound has been the subject of very extensive experimental studies, both for a large range of sizes and a large variety of associated metals. Considering the most commonly encountered core-shell segregated configuration M@Ag involving a transition metal M, the spectral response is found to be weakly discriminating with regard to the chemical order and composition and is characterized by a large unstructured plasmon resonance in the 2 eV to 4 eV range. The plasmon band is essentially shaped by the scars made in the absorption continuum of metal M by Fano-like induced resonances and is surprisingly little sensitive to the exact nature of this metal, giving birth to a "quasi universal" optical signature for M@Ag systems. In this paper, we show how this generic behaviour arises from the specific plasmonic response of silver and stress the role of interband transitions of both metals through their coupling with the free electron oscillation modes. This theoretical discussion will be illustrated through selected experimental results.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...