Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mikrochim Acta ; 191(4): 226, 2024 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-38558261

RESUMO

The focus of this paper is laid on synthesizing layered compounds of CuMoO4 and Ti3C2Tx using a simple wet chemical etching method and sonochemical method to enable rapid detection of rutin using an electrochemical sensor. Following structural examinations using XRD, surface morphology analysis using SEM, and chemical composition state analysis using XPS, the obtained CuMoO4/Ti3C2Tx nanocomposite electrocatalyst was confirmed and characterized. By employing cyclic voltammetry and differential pulse voltammetry, the electrochemical properties of rutin on a CuMoO4/Ti3C2Tx modified electrode were examined, including its stability and response to variations in pH, loading, sweep rate, and interference. The CuMoO4/Ti3C2Tx modified electrode demonstrates rapid rutin sensing under optimal conditions and offers a linear range of 1 µΜ to 15 µΜ, thereby improving the minimal detection limit (LOD) to 42.9 nM. According to electrochemical analysis, the CuMoO4/Ti3C2Tx electrode also demonstrated cyclic stability and long-lasting anti-interference capabilities. The CuMoO4/Ti3C2Tx nanocomposite demonstrated acceptable recoveries when used to sense RT in apple and grape samples. In comparison to other interfering sample analytes encountered in the current study, the developed sensor demonstrated high selectivity and anti-interference performance. As a result, our research to design of high-performance electrochemical sensors in the biomedical and therapeutic fields.


Assuntos
Antioxidantes , Nanocompostos , Titânio , Cromatografia Gasosa , Rutina
2.
Environ Res ; 244: 117834, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38065395

RESUMO

In the present study, shock-wave impact experiments were conducted to investigate the structural properties of nickel metal powder when exposed to shock waves. Both X-ray diffractometry and scanning electron microscopy were used to evaluate the structural and surface morphological changes in the shock-loaded samples. Notably, the experimental results revealed variations in lattice parameters and cell structures as a function of the number of shock pulses and the increasing volume. The transition occurred from P2 (100 shocks) to P3 (200 shocks). Remarkably, P5 (400 shocks) exhibited attempts to return to its initial state, and intriguingly, P4 displayed characteristics reminiscent of the pre-shock condition. Additionally, significant morphological changes were observed with an increase in shock pulses. Magnetic measurements revealed an increase in magnetic moment for P2, P3, and P4, but a return to the original state was observed for P5. Moreover, the capacitance exhibited an upward trend with increasing shock pulses, except for P5, where it experienced a decline. These findings underscore the significant impact of even mild shock waves on the physical and chemical characteristics of bifunctional nickel particles. This research sheds light on the potential applications of shock wave-induced structural changes in enhancing the magnetic properties and supercapacitor performance of nickel particles.


Assuntos
Fenômenos Magnéticos , Níquel
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...