Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Cardiovasc Magn Reson ; : 101083, 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39142568

RESUMO

BACKGROUND: Aortic blood flow characterization by 4D flow MRI is increasingly performed in aneurysm research. A limited number of studies have established normal values that can aid the recognition of abnormal flow at an early stage. This study aims to establish additional sex-specific and age-dependent reference values for flow-related parameters in a large cohort of healthy adults. METHODS: 212 volunteers were included, and 191 volunteers completed the full study protocol. All underwent 4D flow MRI of the entire aorta. Quantitative values for velocity, vorticity, helicity, as well as total, circumferential, and axial wall shear stress [WSS] were determined for the aortic root [AoR], ascending aorta [AAo], aortic arch [AoA], descending [DAo], suprarenal [SRA], and infrarenal aorta [IRA]. Vorticity and helicity were indexed for segment volume (mL). RESULTS: The normal values were estimated per sex- and age-group, where significant differences between males (M) and females (F) were found only for specific age groups. More specifically, the following variables were significantly different after applying the false discovery rate correction for multiple testing: 1) velocity in the AAo and DAo in the 60-70 years age group (mean±SD: (M) 47.0 ± 8.2cm/s vs. (F) 38.4 ± 6.9cm/s, p=0.001 and, (M) 55.9 ± 9.9cm/s vs. (F) 46.5 ± 5.5cm/s, p=0.002), 2) normalized vorticity in AoR in the 50-59 years age group ((M) 27539 ± 5042s-1mL-1 vs. (F) 30849 ± 7285s-1mL-1, p=0.002), 3) axial WSS in the Aao in the 18-29 age group ((M) 1098 ± 203 mPa vs. (F) 921 ± 121 mPa, p=0.002). Good to strong negative correlations with age were seen for almost all variables, in different segments, and for both sexes. CONCLUSION: This study describes reference values for aortic flow-related parameters as acquired by 4D flow MRI. We observed limited differences between males and females. A negative relationship with age was seen for almost all flow-related parameters and segments.

2.
J Magn Reson Imaging ; 59(3): 1056-1067, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37309838

RESUMO

BACKGROUND: Aortic flow parameters can be quantified using 4D flow MRI. However, data are sparse on how different methods of analysis influence these parameters and how these parameters evolve during systole. PURPOSE: To assess multiphase segmentations and multiphase quantification of flow-related parameters in aortic 4D flow MRI. STUDY TYPE: Prospective. POPULATION: 40 healthy volunteers (50% male, 28.9 ± 5.0 years) and 10 patients with thoracic aortic aneurysm (80% male, 54 ± 8 years). FIELD STRENGTH/SEQUENCE: 4D flow MRI with a velocity encoded turbo field echo sequence at 3 T. ASSESSMENT: Phase-specific segmentations were obtained for the aortic root and the ascending aorta. The whole aorta was segmented in peak systole. In all aortic segments, time to peak (TTP; for flow velocity, vorticity, helicity, kinetic energy, and viscous energy loss) and peak and time-averaged values (for velocity and vorticity) were calculated. STATISTICAL TESTS: Static vs. phase-specific models were assessed using Bland-Altman plots. Other analyses were performed using phase-specific segmentations for aortic root and ascending aorta. TTP for all parameters was compared to TTP of flow rate using paired t-tests. Time-averaged and peak values were assessed using Pearson correlation coefficient. P < 0.05 was considered statistically significant. RESULTS: In the combined group, velocity in static vs. phase-specific segmentations differed by 0.8 cm/sec for the aortic root, and 0.1 cm/sec (P = 0.214) for the ascending aorta. Vorticity differed by 167 sec-1 mL-1 (P = 0.468) for the aortic root, and by 59 sec-1 mL-1 (P = 0.481) for the ascending aorta. Vorticity, helicity, and energy loss in the ascending aorta, aortic arch, and descending aorta peaked significantly later than flow rate. Time-averaged velocity and vorticity values correlated significantly in all segments. DATA CONCLUSION: Static 4D flow MRI segmentation yields comparable results as multiphase segmentation for flow-related parameters, eliminating the need for time-consuming multiple segmentations. However, multiphase quantification is necessary for assessing peak values of aortic flow-related parameters. LEVEL OF EVIDENCE: 2 TECHNICAL EFFICACY STAGE: 3.


Assuntos
Aorta , Hemodinâmica , Humanos , Masculino , Feminino , Estudos Prospectivos , Aorta Torácica , Imageamento por Ressonância Magnética/métodos , Velocidade do Fluxo Sanguíneo
3.
Biomedicines ; 11(8)2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37626592

RESUMO

Current management guidelines for ascending thoracic aortic aneurysms (aTAA) recommend intervention once ascending or sinus diameter reaches 5-5.5 cm or shows a growth rate of >0.5 cm/year estimated from echo/CT/MRI. However, many aTAA dissections (aTAAD) occur in vessels with diameters below the surgical intervention threshold of <55 mm. Moreover, during aTAA repair surgeons observe and experience considerable variations in tissue strength, thickness, and stiffness that appear not fully explained by patient risk factors. To improve the understanding of aTAA pathophysiology, we established a multi-disciplinary research infrastructure: The Maastricht acquisition platform for studying mechanisms of tissue-cell crosstalk (MAPEX). The explicit scientific focus of the platform is on the dynamic interactions between vascular smooth muscle cells and extracellular matrix (i.e., cell-matrix crosstalk), which play an essential role in aortic wall mechanical homeostasis. Accordingly, we consider pathophysiological influences of wall shear stress, wall stress, and smooth muscle cell phenotypic diversity and modulation. Co-registrations of hemodynamics and deep phenotyping at the histological and cell biology level are key innovations of our platform and are critical for understanding aneurysm formation and dissection at a fundamental level. The MAPEX platform enables the interpretation of the data in a well-defined clinical context and therefore has real potential for narrowing existing knowledge gaps. A better understanding of aortic mechanical homeostasis and its derangement may ultimately improve diagnostic and prognostic possibilities to identify and treat symptomatic and asymptomatic patients with existing and developing aneurysms.

4.
Bioengineering (Basel) ; 10(7)2023 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-37508873

RESUMO

Mechanical properties of an aneurysmatic thoracic aorta are potential markers of future growth and remodelling and can help to estimate the risk of rupture. Aortic geometries obtained from routine medical imaging do not display wall stress distribution and mechanical properties. Mechanical properties for a given vessel may be determined from medical images at different physiological pressures using inverse finite element analysis. However, without considering pre-stresses, the estimation of mechanical properties will lack accuracy. In the present paper, we propose and evaluate a mechanical parameter identification technique, which recovers pre-stresses by determining the zero-pressure configuration of the aortic geometry. We first validated the method on a cylindrical geometry and subsequently applied it to a realistic aortic geometry. The verification of the assessed parameters was performed using synthetically generated reference data for both geometries. The method was able to estimate the true mechanical properties with an accuracy ranging from 98% to 99%.

5.
Insights Imaging ; 14(1): 114, 2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-37395817

RESUMO

Four-dimensional flow magnetic resonance imaging is an emerging technique which may play a role in diagnosis and risk-stratification of aortic disease. Some knowledge of flow dynamics and related parameters is necessary to understand and apply this technique in clinical workflows. The purpose of the current review is to provide a guide for clinicians to the basics of flow imaging, frequently used flow-related parameters, and their relevance in the context of aortic disease.Clinical relevance statement Understanding normal and abnormal aortic flow could improve clinical care in patients with aortic disease.

7.
Heart ; 109(2): 96-101, 2022 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-35321890

RESUMO

Acute type A aortic dissection (ATAAD) is a life-threatening condition that requires emergency surgery to avert fatal outcome. Conventional surgical procedures comprise excision of the entry tear and replacement of the proximal aorta with a synthetic vascular graft. In patients with DeBakey type I dissection, this approach leaves a chronically dissected distal aorta, putting them at risk for progressive dilatation, dissection propagation and aortic rupture. Therefore, ATAAD survivors should undergo serial imaging for evaluation of the aortic valve, proximal and distal anastomoses, and the aortic segments beyond the distal anastomosis. The current narrative review aims to describe potential complications in the early and late phases after ATAAD surgery, with focus on their specific imaging findings.


Assuntos
Aneurisma da Aorta Torácica , Dissecção Aórtica , Ruptura Aórtica , Implante de Prótese Vascular , Humanos , Aneurisma da Aorta Torácica/diagnóstico por imagem , Aneurisma da Aorta Torácica/cirurgia , Dissecção Aórtica/diagnóstico por imagem , Dissecção Aórtica/cirurgia , Aorta/cirurgia , Valva Aórtica/cirurgia , Resultado do Tratamento , Doença Aguda , Estudos Retrospectivos , Implante de Prótese Vascular/efeitos adversos , Complicações Pós-Operatórias/diagnóstico por imagem , Complicações Pós-Operatórias/etiologia , Complicações Pós-Operatórias/cirurgia
8.
Invest Radiol ; 56(8): 494-500, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-33653992

RESUMO

OBJECTIVES: Degenerative thoracic aortic aneurysm (TAA) patients are known to be at risk of life-threatening acute aortic events. Guidelines recommend preemptive surgery at diameters of greater than 55 mm, although many patients with small aneurysms show only mild growth rates and more than half of complications occur in aneurysms below this threshold. Thus, assessment of hemodynamics using 4-dimensional flow magnetic resonance has been of interest to obtain more insights in aneurysm development. Nonetheless, the role of aberrant flow patterns in TAA patients is not yet fully understood. MATERIALS AND METHODS: A total of 25 TAA patients and 22 controls underwent time-resolved 3-dimensional phase contrast magnetic resonance imaging with 3-directional velocity encoding (ie, 4-dimensional flow magnetic resonance imaging). Hemodynamic parameters such as vorticity, helicity, and wall shear stress (WSS) were calculated from velocity data in 3 anatomical segments of the ascending aorta (root, proximal, and distal). Regional WSS distribution was assessed for the full cardiac cycle. RESULTS: Flow vorticity and helicity were significantly lower for TAA patients in all segments. The proximal ascending aorta showed a significant increase in peak WSS in the outer curvature in TAA patients, whereas WSS values at the inner curvature were significantly lower as compared with controls. Furthermore, positive WSS gradients from sinotubular junction to midascending aorta were most prominent in the outer curvature, whereas from midascending aorta to brachiocephalic trunk, the outer curvature showed negative WSS gradients in the TAA group. Controls solely showed a positive gradient at the inner curvature for both segments. CONCLUSIONS: Degenerative TAA patients show a decrease in flow vorticity and helicity, which is likely to cause perturbations in physiological flow patterns. The subsequent differing distribution of WSS might be a contributor to vessel wall remodeling and aneurysm formation.


Assuntos
Aorta , Aneurisma da Aorta Torácica , Aorta/diagnóstico por imagem , Aorta Torácica , Aneurisma da Aorta Torácica/diagnóstico por imagem , Velocidade do Fluxo Sanguíneo , Hemodinâmica , Humanos , Imageamento por Ressonância Magnética , Espectroscopia de Ressonância Magnética , Fluxo Sanguíneo Regional , Estresse Mecânico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA