Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Cell Endocrinol ; 563: 111854, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36682621

RESUMO

Cannabinoid receptor 1 (CB1) antagonists were shown to stimulate in vitro muscle protein synthesis, but this has never been confirmed in vivo. Therefore, this study investigated whether treatment with the CB1 antagonist AM6545 upregulates in vivo muscle anabolism. Chronic AM6545 treatment stimulated the Akt-mTOR axis and protein synthesis (+22%; p = 0.002) in the Tibialis Anterior, which protected mice from dexamethasone-induced muscle loss (-1% vs. -6% compared to healthy controls; p = 0.02). Accordingly, acute AM6545 treatment stimulated protein synthesis (+44%; p = 0.04) in the Tibialis Anterior but not Soleus. The anabolic upregulation was accompanied by ERK1/2 activation, whereas protein kinase A signaling remained unaffected, suggesting a CB1-independent mechanism. The present study for the first time shows that the CB1 antagonist AM6545 can upregulate the Akt-mTOR axis and in vivo muscle protein synthesis. However, future work applying genetic approaches should further uncover the signaling pathways via which AM6545 enhances muscle anabolism.


Assuntos
Proteínas Musculares , Proteínas Proto-Oncogênicas c-akt , Camundongos , Animais , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Musculares/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Atrofia Muscular/patologia , Músculo Esquelético/metabolismo , Receptores de Canabinoides/metabolismo , Dexametasona/farmacologia , Receptor CB1 de Canabinoide/genética , Receptor CB1 de Canabinoide/metabolismo
2.
Med Sci Sports Exerc ; 53(2): 431-441, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-32735112

RESUMO

PURPOSE: We recently reported that oral ketone ester (KE) intake before and during the initial 30 min of a 3 h 15 min simulated cycling race (RACE) transiently decreased blood pH and bicarbonate without affecting maximal performance in the final quarter of the event. We hypothesized that acid-base disturbances due to KE overrules the ergogenic potential of exogenous ketosis in endurance exercise. METHODS: Nine well-trained male cyclists participated in a similar RACE consisting of 3 h submaximal intermittent cycling (IMT180') followed by a 15-min time trial (TT15') preceding an all-out sprint at 175% of lactate threshold (SPRINT). In a randomized crossover design, participants received (i) 65 g KE, (ii) 300 mg·kg-1 body weight NaHCO3 (BIC), (iii) KE + BIC, or (iv) a control drink (CON), together with consistent 60 g·h-1 carbohydrate intake. RESULTS: KE ingestion transiently elevated blood D-ß-hydroxybutyrate to ~2-3 mM during the initial 2 h of RACE (P < 0.001 vs CON). In KE, blood pH concomitantly dropped from 7.43 to 7.36 whereas bicarbonate decreased from 25.5 to 20.5 mM (both P < 0.001 vs CON). Additional BIC resulted in 0.5 to 0.8 mM higher blood D-ß-hydroxybutyrate during the first half of IMT180' (P < 0.05 vs KE) and increased blood bicarbonate to 31.1 ± 1.8 mM and blood pH to 7.51 ± 0.03 by the end of IMT180' (P < 0.001 vs KE). Mean power output during TT15' was similar between KE, BIC, and CON at ~255 W but was 5% higher in KE + BIC (P = 0.02 vs CON). Time to exhaustion in the sprint was similar between all conditions at ~60 s (P = 0.88). Gastrointestinal symptoms were similar between groups. DISCUSSION: The coingestion of oral bicarbonate and KE enhances high-intensity performance at the end of an endurance exercise event without causing gastrointestinal distress.


Assuntos
Bicarbonatos/administração & dosagem , Suplementos Nutricionais , Cetonas/administração & dosagem , Substâncias para Melhoria do Desempenho/administração & dosagem , Resistência Física/fisiologia , Apetite , Bicarbonatos/efeitos adversos , Bicarbonatos/sangue , Gasometria , Glicemia/metabolismo , Estudos Cross-Over , Método Duplo-Cego , Eletrólitos/sangue , Ésteres , Gastroenteropatias/induzido quimicamente , Frequência Cardíaca , Humanos , Concentração de Íons de Hidrogênio , Cetonas/efeitos adversos , Cetonas/urina , Ácido Láctico/sangue , Masculino , Percepção/fisiologia , Substâncias para Melhoria do Desempenho/efeitos adversos , Esforço Físico/fisiologia , Troca Gasosa Pulmonar
3.
Med Sci Sports Exerc ; 53(5): 1068-1078, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33196605

RESUMO

PURPOSE: We recently demonstrated that coingestion of NaHCO3 to counteract ketoacidosis resulting from oral ketone ester (KE) intake improves mean power output during a 15-min time trial (TT) at the end of a 3-h cycling race by ~5%. This ergogenic effect occurred at a time when blood ketone levels were low, as ketosis was only induced during the initial ~2 h of the race. Therefore, in the current study, we investigated whether performance also increases if blood ketone levels are increased in the absence of ketoacidosis during high-intensity exercise. METHODS: In a double-blind crossover design, 14 well-trained male cyclists completed a 30-min TT (TT30') followed by an all-out sprint at 175% of lactate threshold (SPRINT). Subjects were randomized to receive (i) 50 g KE, (ii) 180 mg·kg-1 body weight NaHCO3 (BIC), (iii) KE + BIC, or (iv) a control drink (CON). RESULTS: KE ingestion increased blood d-ß-hydroxybutyrate to ~3-4 mM during the TT30' and SPRINT (P < 0.001 vs CON). In KE, blood pH and bicarbonate concomitantly dropped, causing 0.05 units lower pH and 2.6 mM lower bicarbonate in KE compared with CON during the TT30' and SPRINT (P < 0.001 vs CON). BIC coingestion resulted in 0.9 mM higher blood d-ß-hydroxybutyrate (P < 0.001 vs KE) and completely counteracted ketoacidosis during exercise (P > 0.05 vs CON). Mean power output during TT30' was similar between CON and BIC at 281 W, but was 1.5% lower in the KE conditions (main effect of KE: P = 0.03). Time to exhaustion in the SPRINT was ~64 s in CON and KE and increased by ~8% in the BIC conditions (main effect of BIC: P < 0.01). DISCUSSION: Neutralization of acid-base disturbance by BIC coingestion is insufficient to counteract the slightly negative effect of KE intake during high-intensity exercise.


Assuntos
Desempenho Atlético/fisiologia , Ciclismo/fisiologia , Cetonas/sangue , Cetose/fisiopatologia , Bicarbonato de Sódio/administração & dosagem , Equilíbrio Ácido-Base , Adulto , Análise de Variância , Cálcio/sangue , Cloretos/sangue , Estudos Cross-Over , Dieta da Carga de Carboidratos , Carboidratos da Dieta/administração & dosagem , Método Duplo-Cego , Ésteres/administração & dosagem , Humanos , Concentração de Íons de Hidrogênio , Hidroxibutiratos/sangue , Cetonas/administração & dosagem , Cetonas/urina , Cetose/induzido quimicamente , Cetose/prevenção & controle , Ácido Láctico/sangue , Masculino , Substâncias para Melhoria do Desempenho , Placebos/administração & dosagem , Fatores de Tempo
4.
J Muscle Res Cell Motil ; 41(4): 375-387, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32621158

RESUMO

To improve muscle healing upon injury, it is of importance to understand the interplay of key signaling pathways during muscle regeneration. To study this, mice were injected with cardiotoxin (CTX) or PBS in the Tibialis Anterior muscle and were sacrificed 2, 5 and 12 days upon injection. The time points represent different phases of the regeneration process, i.e. destruction, repair and remodeling, respectively. Two days upon CTX-injection, p-mTORC1 signaling and stress markers such as BiP and p-ERK1/2 were upregulated. Phospho-ERK1/2 and p-mTORC1 peaked at d5, while BiP expression decreased towards PBS levels. Phospho-FOXO decreased 2 and 5 days following CTX-injection, indicative of an increase in catabolic signaling. Furthermore, CTX-injection induced a shift in the fiber type composition, characterized by an initial loss in type IIa fibers at d2 and at d5. At d5, new type IIb fibers appeared, whereas type IIa fibers were recovered at d12. To conclude, CTX-injection severely affected key modulators of muscle metabolism and histology. These data provide useful information for the development of strategies that aim to improve muscle molecular signaling and thereby recovery.


Assuntos
Cardiotoxinas/efeitos adversos , Fibras Musculares Esqueléticas/metabolismo , Doenças Musculares/induzido quimicamente , Animais , Masculino , Camundongos , Transdução de Sinais
5.
J Appl Physiol (1985) ; 128(6): 1643-1653, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32407242

RESUMO

Available evidence indicates that ketone bodies inhibit glycolysis in contracting muscles. Therefore, we investigated whether acute exogenous ketosis by oral ketone ester (KE) intake early in a simulated cycling race can induce transient glycogen sparing by glycolytic inhibition, thereby increasing glycogen availability in the final phase of the event. In a randomized crossover design, 12 highly trained male cyclists completed a simulated cycling race (RACE), which consisted of 3-h intermittent cycling (IMT180'), a 15-min time trial (TT15'), and a maximal sprint (SPRINT). During RACE, subjects received 60 g carbohydrates/h combined with three boluses (25, 20, and 20 g) (R)-3-hydroxybutyl (R)-3-hydroxybutyrate (KE) or a control drink (CON) at 60 and 20 min before and at 30 min during RACE. KE intake transiently increased blood d-ß-hydroxybutyrate to ~3 mM (range: 2.6-5.2 mM) during the first half of RACE (P < 0.001 vs. CON). Blood pH concomitantly decreased from approximately 7.42 to 7.36 (range: 7.29-7.40), whereas bicarbonate dropped from 26.0 to 21.6 mM (range: 20.1-23.7; both P < 0.001 vs. CON). Net muscle glycogen breakdown during IMT180' [KE: -78 ± 30 (SD); CON: -60 ± 22 mmol/kg wet wt; P = 0.08] and TT15' (KE: -9 ± 18; CON: -18 ± 18 mmol/kg wet wt; P = 0.35) was similar between KE and CON. Accordingly, mean power output during TT15' (KE: 273 ± 38; CON: 272 ± 37 W; P = 0.83) and time-to-exhaustion in the SPRINT (KE: 59 ± 16; CON: 58 ± 17 s; P = 0.66) were similar between conditions. In conclusion, KE intake during a simulated cycling race does not cause glycogen sparing, nor does it affect all-out performance in the final stage of a simulated race.NEW & NOTEWORTHY Exogenous ketosis produced by oral ketone ester ingestion during the early phase of prolonged endurance exercise and against the background of adequate carbohydrate intake neither causes muscle glycogen sparing nor improves performance in the final stage of the event. However, such exogenous ketosis may decrease buffering capacity in the approach of the final episode of the event. Furthermore, ketone ester intake during exercise may reduce appetite immediately after exercise.


Assuntos
Glicemia , Cetose , Carboidratos da Dieta , Exercício Físico , Glicogênio , Humanos , Masculino , Músculo Esquelético , Músculos , Resistência Física
7.
Exp Gerontol ; 133: 110860, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32017951

RESUMO

INTRODUCTION: Ageing is associated with an attenuated hypertrophic response to resistance training and periods of training interruptions. Hence, elderly would benefit from the 'muscle memory' effects of resistance training on muscle strength and mass during detraining and retraining. As the underlying mechanisms are not yet clear, this study investigated the role of myonuclei during training, detraining and retraining by using PCM1 labelling in muscle cross-sections of six older men. METHODS: Knee extension strength and power were measured in 30 older men and 10 controls before and after 12 weeks resistance training and after detraining and retraining of similar length. In a subset, muscle biopsies from the vastus lateralis were taken for analysis of fibre size, fibre type distribution, Pax7+ satellite cell number and myonuclear domain size. RESULTS: Resistance training increased knee extension strength and power parameters (+10 to +36%, p < .001) and decreased the frequency of type IIax fibres by half (from 20 to 10%, p = .034). Detraining resulted in a modest loss of strength and power (-5 to -15%, p ≤ .004) and a trend towards a fibre-type specific decrease in type II fibre cross-sectional area (-17%, p = .087), type II satellite cell number (-30%, p = .054) and type II myonuclear number (-12%, p = .084). Less than eight weeks of retraining were needed to reach the post-training level of one-repetition maximum strength. Twelve weeks of retraining were associated with type II fibre hypertrophy (+29%, p = .050), which also promoted an increase in the number of satellite cells (+72%, p = .036) and myonuclei (+13%, p = .048) in type II fibres. Changes in the type II fibre cross-sectional area were positively correlated with changes in the myonuclear number (Pearson's r between 0.40 and 0.73), resulting in a stable myonuclear domain. CONCLUSION: Gained strength and power and fibre type changes were partially preserved following 12 weeks of detraining, allowing for a fast recovery of the 1RM performance following retraining. Myonuclear number tended to follow individual changes in type II fibre size, which is in support of the myonuclear domain theory.


Assuntos
Treinamento Resistido , Células Satélites de Músculo Esquelético , Idoso , Humanos , Hipertrofia , Masculino , Fibras Musculares Esqueléticas , Força Muscular , Músculo Esquelético
11.
J Physiol ; 597(12): 3009-3027, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31039280

RESUMO

KEY POINTS: Overload training is required for sustained performance gain in athletes (functional overreaching). However, excess overload may result in a catabolic state which causes performance decrements for weeks (non-functional overreaching) up to months (overtraining). Blood ketone bodies can attenuate training- or fasting-induced catabolic events. Therefore, we investigated whether increasing blood ketone levels by oral ketone ester (KE) intake can protect against endurance training-induced overreaching. We show for the first time that KE intake following exercise markedly blunts the development of physiological symptoms indicating overreaching, and at the same time significantly enhances endurance exercise performance. We provide preliminary data to indicate that growth differentiation factor 15 (GDF15) may be a relevant hormonal marker to diagnose the development of overtraining. Collectively, our data indicate that ketone ester intake is a potent nutritional strategy to prevent the development of non-functional overreaching and to stimulate endurance exercise performance. ABSTRACT: It is well known that elevated blood ketones attenuate net muscle protein breakdown, as well as negate catabolic events, during energy deficit. Therefore, we hypothesized that oral ketones can blunt endurance training-induced overreaching. Fit male subjects participated in two daily training sessions (3 weeks, 6 days/week) while receiving either a ketone ester (KE, n = 9) or a control drink (CON, n = 9) following each session. Sustainable training load in week 3 as well as power output in the final 30 min of a 2-h standardized endurance session were 15% higher in KE than in CON (both P < 0.05). KE inhibited the training-induced increase in nocturnal adrenaline (P < 0.01) and noradrenaline (P < 0.01) excretion, as well as blunted the decrease in resting (CON: -6 ± 2 bpm; KE: +2 ± 3 bpm, P < 0.05), submaximal (CON: -15 ± 3 bpm; KE: -7 ± 2 bpm, P < 0.05) and maximal (CON: -17 ± 2 bpm; KE: -10 ± 2 bpm, P < 0.01) heart rate. Energy balance during the training period spontaneously turned negative in CON (-2135 kJ/day), but not in KE (+198 kJ/day). The training consistently increased growth differentiation factor 15 (GDF15), but ∼2-fold more in CON than in KE (P < 0.05). In addition, delta GDF15 correlated with the training-induced drop in maximal heart rate (r = 0.60, P < 0.001) and decrease in osteocalcin (r = 0.61, P < 0.01). Other measurements such as blood ACTH, cortisol, IL-6, leptin, ghrelin and lymphocyte count, and muscle glycogen content did not differentiate KE from CON. In conclusion, KE during strenuous endurance training attenuates the development of overreaching. We also identify GDF15 as a possible marker of overtraining.


Assuntos
Treino Aeróbico , Ésteres/farmacologia , Cetonas/farmacologia , Adolescente , Adulto , Bebidas , Ciclismo , Biomarcadores/sangue , Método Duplo-Cego , Fator 15 de Diferenciação de Crescimento/sangue , Humanos , Cetonas/urina , Masculino , Adulto Jovem
12.
Front Physiol ; 8: 310, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28588499

RESUMO

Purpose: Ketone bodies are energy substrates produced by the liver during prolonged fasting or low-carbohydrate diet. The ingestion of a ketone ester (KE) rapidly increases blood ketone levels independent of nutritional status. KE has recently been shown to improve exercise performance, but whether it can also promote post-exercise muscle protein or glycogen synthesis is unknown. Methods: Eight healthy trained males participated in a randomized double-blind placebo-controlled crossover study. In each session, subjects undertook a bout of intense one-leg glycogen-depleting exercise followed by a 5-h recovery period during which they ingested a protein/carbohydrate mixture. Additionally, subjects ingested a ketone ester (KE) or an isocaloric placebo (PL). Results: KE intake did not affect muscle glycogen resynthesis, but more rapidly lowered post-exercise AMPK phosphorylation and resulted in higher mTORC1 activation, as evidenced by the higher phosphorylation of its main downstream targets S6K1 and 4E-BP1. As enhanced mTORC1 activation following KE suggests higher protein synthesis rates, we used myogenic C2C12 cells to further confirm that ketone bodies increase both leucine-mediated mTORC1 activation and protein synthesis in muscle cells. Conclusion: Our results indicate that adding KE to a standard post-exercise recovery beverage enhances the post-exercise activation of mTORC1 but does not affect muscle glycogen resynthesis in young healthy volunteers. In vitro, we confirmed that ketone bodies potentiate the increase in mTORC1 activation and protein synthesis in leucine-stimulated myotubes. Whether, chronic oral KE intake during recovery from exercise can facilitate training-induced muscular adaptation and remodeling need to be further investigated.

13.
Sports Med Open ; 2(1): 43, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27873242

RESUMO

BACKGROUND: The aims of the present study were to investigate the impact of three whole blood donations on endurance capacity and hematological parameters and to determine the duration to fully recover initial endurance capacity and hematological parameters after each donation. METHODS: Twenty-four moderately trained subjects were randomly divided in a donation (n = 16) and a placebo (n = 8) group. Each of the three donations was interspersed by 3 months, and the recovery of endurance capacity and hematological parameters was monitored up to 1 month after donation. RESULTS: Maximal power output, peak oxygen consumption, and hemoglobin mass decreased (p < 0.001) up to 4 weeks after a single blood donation with a maximal decrease of 4, 10, and 7%, respectively. Hematocrit, hemoglobin concentration, ferritin, and red blood cell count (RBC), all key hematological parameters for oxygen transport, were lowered by a single donation (p < 0.001) and cumulatively further affected by the repetition of the donations (p < 0.001). The maximal decrease after a blood donation was 11% for hematocrit, 10% for hemoglobin concentration, 50% for ferritin, and 12% for RBC (p < 0.001). Maximal power output cumulatively increased in the placebo group as the maximal exercise tests were repeated (p < 0.001), which indicates positive training adaptations. This increase in maximal power output over the whole duration of the study was not observed in the donation group. CONCLUSIONS: Maximal, but not submaximal, endurance capacity was altered after blood donation in moderately trained people and the expected increase in capacity after multiple maximal exercise tests was not present when repeating whole blood donations.

14.
PLoS One ; 11(3): e0150594, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26930663

RESUMO

PURPOSE: To examine the effect of α-actinin-3 deficiency due to homozygosity for the ACTN3 577X-allele on contractile and morphological properties of fast muscle fibers in non-athletic young men. METHODS: A biopsy was taken from the vastus lateralis of 4 RR and 4 XX individuals to test for differences in morphologic and contractile properties of single muscle fibers. The cross-sectional area of the fiber and muscle fiber composition was determined using standard immunohistochemistry analyses. Skinned single muscle fibers were subjected to active tests to determine peak normalized force (P0), maximal unloading velocity (V0) and peak power. A passive stretch test was performed to calculate Young's Modulus and hysteresis to assess fiber visco-elasticity. RESULTS: No differences were found in muscle fiber composition. The cross-sectional area of type IIa and IIx fibers was larger in RR compared to XX individuals (P<0.001). P0 was similar in both groups over all fiber types. A higher V0 was observed in type IIa fibers of RR genotypes (P<0.001) but not in type I fibers. The visco-elasticity as determined by Young's Modulus and hysteresis was unaffected by fiber type or genotype. CONCLUSION: The greater V0 and the larger fast fiber CSA in RR compared to XX genotypes likely contribute to enhanced whole muscle performance during high velocity contractions.


Assuntos
Actinina/fisiologia , Fibras Musculares Esqueléticas/fisiologia , Actinina/genética , Biópsia por Agulha , Genes/fisiologia , Genótipo , Humanos , Masculino , Contração Muscular/fisiologia , Músculo Esquelético/anatomia & histologia , Adulto Jovem
15.
Appl Physiol Nutr Metab ; 40(9): 868-76, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26307517

RESUMO

There is growing in vivo evidence that the dipeptide carnosine has protective effects in metabolic diseases. A critical unanswered question is whether its site of action is tissues or plasma. This was investigated using oral carnosine versus ß-alanine supplementation in a high-fat diet rat model. Thirty-six male Sprague-Dawley rats received a control diet (CON), a high-fat diet (HF; 60% of energy from fat), the HF diet with 1.8% carnosine (HFcar), or the HF diet with 1% ß-alanine (HFba), as ß-alanine can increase muscle carnosine without increasing plasma carnosine. Insulin sensitivity, inflammatory signaling, and lipoxidative stress were determined in skeletal muscle and blood. In a pilot study, urine was collected. The 3 HF groups were significantly heavier than the CON group. Muscle carnosine concentrations increased equally in the HFcar and HFba groups, while elevated plasma carnosine levels and carnosine-4-hydroxy-2-nonenal adducts were detected only in the HFcar group. Elevated plasma and urine N(ε)-(carboxymethyl)lysine in HF rats was reduced by ∼50% in the HFcar group but not in the HFba group. Likewise, inducible nitric oxide synthase mRNA was decreased by 47% (p < 0.05) in the HFcar group, but not in the HFba group, compared with HF rats. We conclude that plasma carnosine, but not muscle carnosine, is involved in preventing early-stage lipoxidation in the circulation and inflammatory signaling in the muscle of rats.


Assuntos
Anti-Inflamatórios/administração & dosagem , Carnosina/administração & dosagem , Dieta Hiperlipídica , Suplementos Nutricionais , Inflamação/prevenção & controle , Peroxidação de Lipídeos/efeitos dos fármacos , Músculo Esquelético/efeitos dos fármacos , Administração Oral , Animais , Anti-Inflamatórios/sangue , Glicemia/metabolismo , Carnosina/sangue , Modelos Animais de Doenças , Inflamação/sangue , Inflamação/etiologia , Inflamação/genética , Mediadores da Inflamação/metabolismo , Insulina/sangue , Resistência à Insulina , Masculino , Músculo Esquelético/metabolismo , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/metabolismo , Ratos Sprague-Dawley , Ratos Wistar , Transdução de Sinais/efeitos dos fármacos , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo , beta-Alanina/administração & dosagem , beta-Alanina/sangue
16.
J Int Soc Sports Nutr ; 10(1): 45, 2013 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-24144232

RESUMO

BACKGROUND: Oral intake of a specific extract of Opuntia ficus-indica cladode and fruit skin (OpunDia™) (OFI) has been shown to increase serum insulin concentration while reducing blood glucose level for a given amount of glucose ingestion after an endurance exercise bout in healthy young volunteers. However, it is unknown whether OFI-induced insulin stimulation after exercise is of the same magnitude than the stimulation by other insulinogenic agents like leucine as well as whether OFI can interact with those agents. Therefore, the aims of the present study were: 1) to compare the degree of insulin stimulation by OFI with the effect of leucine administration; 2) to determine whether OFI and leucine have an additive action on insulin stimulation post-exercise. METHODS: Eleven subjects participated in a randomized double-blind cross-over study involving four experimental sessions. In each session the subjects successively underwent a 2-h oral glucose tolerance test (OGTT) after a 30-min cycling bout at ~70% VO2max. At t0 and t60 during the OGTT, subjects ingested 75 g glucose and capsules containing either 1) a placebo; 2) 1000 mg OFI; 3) 3 g leucine; 4) 1000 mg OFI + 3 g leucine. Blood samples were collected before and at 30-min intervals during the OGTT for determination of blood glucose and serum insulin. RESULTS: Whereas no effect of leucine was measured, OFI reduced blood glucose at t90 by ~7% and the area under the glucose curve by ~15% and increased serum insulin concentration at t90 by ~35% compared to placebo (P<0.05). From t60 to the end of the OGTT, serum insulin concentration was higher in OFI+leucine than in placebo which resulted in a higher area under the insulin curve (+40%, P<0.05). CONCLUSION: Carbohydrate-induced insulin stimulation post-exercise can be further increased by the combination of OFI with leucine. OFI and leucine could be interesting ingredients to include together in recovery drinks to resynthesize muscle glycogen faster post-exercise. Still, it needs to be confirmed that such nutritional strategy effectively stimulates post-exercise muscle glycogen resynthesis.

17.
Int J Sport Nutr Exerc Metab ; 22(4): 284-91, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22805855

RESUMO

The purpose of this study was to investigate the effect of Opuntia ficus-indica (OFI) cladode and fruit-skin extract on blood glucose and plasma insulin increments due to high-dose carbohydrate ingestion, before and after exercise. Healthy, physically active men (n = 6; 21.0 ± 1.6 years, 78.1 ± 6.0 kg) participated in a double-blind placebo-controlled crossover study involving 2 experimental sessions. In each session, the subjects successively underwent an oral glucose tolerance test at rest (OGTT(R)), a 30-min cycling bout at ~75% VO(2max), and another OGTT after exercise (OGTT(EX)). They received capsules containing either 1,000 mg OFI or placebo (PL) 30 min before and immediately after the OGTT(R). Blood samples were collected before (t0) and at 30-min intervals after ingestion of 75 g glucose for determination of blood glucose and serum insulin. In OGTT(EX) an additional 75-g oral glucose bolus was administered at t60. In OGTT(R), OFI administration reduced the area under the glucose curve (AUC(GLUC)) by 26%, mainly due to lower blood glucose levels at t30 and t60 (p < .05). Furthermore, a higher serum insulin concentration was noted after OFI intake at baseline and at t30 (p < .05). In OGTT(EX), blood glucose at t60 was ~10% lower in OFI than in PL, which resulted in a decreased AUC(GLUC) (-37%, p < .05). However, insulin values and AUC(INS) were not different between OFI and PL. In conclusion, the current study shows that OFI extract can increase plasma insulin and thereby facilitate the clearance of an oral glucose load from the circulation at rest and after endurance exercise in healthy men.


Assuntos
Exercício Físico/fisiologia , Glucose/administração & dosagem , Opuntia/química , Preparações de Plantas/administração & dosagem , Administração Oral , Glicemia/metabolismo , Estudos Cross-Over , Carboidratos da Dieta/administração & dosagem , Método Duplo-Cego , Teste de Tolerância a Glucose , Voluntários Saudáveis , Frequência Cardíaca , Humanos , Insulina/sangue , Resistência à Insulina , Masculino , Resultado do Tratamento , Adulto Jovem
18.
J Appl Physiol (1985) ; 111(1): 108-16, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21551007

RESUMO

In this study, we compared the effects of endurance training in the fasted state (F) vs. the fed state [ample carbohydrate intake (CHO)] on exercise-induced intramyocellular lipid (IMCL) and glycogen utilization during a 6-wk period of a hypercaloric (∼+30% kcal/day) fat-rich diet (HFD; 50% of kcal). Healthy male volunteers (18-25 yrs) received a HFD in conjunction with endurance training (four times, 60-90 min/wk) either in F (n = 10) or with CHO before and during exercise sessions (n = 10). The control group (n = 7) received a HFD without training and increased body weight by ∼3 kg (P < 0.001). Before and after a HFD, the subjects performed a 2-h constant-load bicycle exercise test in F at ∼70% maximal oxygen uptake rate. A HFD, both in the absence (F) or presence (CHO) of training, elevated basal IMCL content by ∼50% in type I and by ∼75% in type IIa fibers (P < 0.05). Independent of training in F or CHO, a HFD, as such, stimulated exercise-induced net IMCL breakdown by approximately twofold in type I and by approximately fourfold in type IIa fibers. Furthermore, exercise-induced net muscle glycogen breakdown was not significantly affected by a HFD. It is concluded that a HFD stimulates net IMCL degradation by increasing basal IMCL content during exercise in type I and especially IIa fibers. Furthermore, a hypercaloric HFD provides adequate amounts of carbohydrates to maintain high muscle glycogen content during training and does not impair exercise-induced muscle glycogen breakdown.


Assuntos
Gorduras na Dieta/metabolismo , Ingestão de Energia , Metabolismo Energético , Exercício Físico , Metabolismo dos Lipídeos , Fibras Musculares Esqueléticas/metabolismo , Resistência Física , Proteínas Quinases Ativadas por AMP/metabolismo , Acetil-CoA Carboxilase/metabolismo , Adolescente , Adulto , Análise de Variância , Bélgica , Carboidratos da Dieta/administração & dosagem , Carboidratos da Dieta/metabolismo , Gorduras na Dieta/administração & dosagem , Teste de Esforço , Jejum/metabolismo , Ácidos Graxos não Esterificados/sangue , Regulação Enzimológica da Expressão Gênica , Glicogênio/metabolismo , Humanos , Masculino , Consumo de Oxigênio , Fosforilação , Proteínas Serina-Treonina Quinases/genética , Piruvato Desidrogenase Quinase de Transferência de Acetil , RNA Mensageiro/metabolismo , Fatores de Tempo , Aumento de Peso , Adulto Jovem
19.
J Appl Physiol (1985) ; 110(1): 236-45, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21051570

RESUMO

Training with limited carbohydrate availability can stimulate adaptations in muscle cells to facilitate energy production via fat oxidation. Here we investigated the effect of consistent training in the fasted state, vs. training in the fed state, on muscle metabolism and substrate selection during fasted exercise. Twenty young male volunteers participated in a 6-wk endurance training program (1-1.5 h cycling at ∼70% Vo(2max), 4 days/wk) while receiving isocaloric carbohydrate-rich diets. Half of the subjects trained in the fasted state (F; n = 10), while the others ingested ample carbohydrates before (∼160 g) and during (1 g·kg body wt⁻¹·h⁻¹) the training sessions (CHO; n = 10). The training similarly increased Vo(2max) (+9%) and performance in a 60-min simulated time trial (+8%) in both groups (P < 0.01). Metabolic measurements were made during a 2-h constant-load exercise bout in the fasted state at ∼65% pretraining Vo(2max). In F, exercise-induced intramyocellular lipid (IMCL) breakdown was enhanced in type I fibers (P < 0.05) and tended to be increased in type IIa fibers (P = 0.07). Training did not affect IMCL breakdown in CHO. In addition, F (+21%) increased the exercise intensity corresponding to the maximal rate of fat oxidation more than did CHO (+6%) (P < 0.05). Furthermore, maximal citrate synthase (+47%) and ß-hydroxyacyl coenzyme A dehydrogenase (+34%) activity was significantly upregulated in F (P < 0.05) but not in CHO. Also, only F prevented the development exercise-induced drop in blood glucose concentration (P < 0.05). In conclusion, F is more effective than CHO to increase muscular oxidative capacity and at the same time enhances exercise-induced net IMCL degradation. In addition, F but not CHO prevented drop of blood glucose concentration during fasting exercise.


Assuntos
Adaptação Fisiológica/fisiologia , Glicemia/metabolismo , Exercício Físico/fisiologia , Jejum/fisiologia , Consumo de Oxigênio/fisiologia , Resistência Física/fisiologia , Aptidão Física/fisiologia , Humanos , Masculino , Adulto Jovem
20.
J Appl Physiol (1985) ; 109(2): 564-73, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20507967

RESUMO

The ACTN3 gene encodes for the alpha-actinin-3 protein, which has an important structural function in the Z line of the sarcomere in fast muscle fibers. A premature stop codon (R577X) polymorphism in the ACTN3 gene causes a complete loss of the protein in XX homozygotes. This study investigates a possible role for the alpha-actinin-3 protein in protecting the fast fiber from eccentric damage and studies repair mechanisms after a single eccentric exercise bout. Nineteen healthy young men (10 XX, 9 RR) performed 4 series of 20 maximal eccentric knee extensions with both legs. Blood (creatine kinase; CK) and muscle biopsy samples were taken to study differential expression of several anabolic (MyoD1, myogenin, MRF4, Myf5, IGF-1), catabolic (myostatin, MAFbx, and MURF-1), and contraction-induced muscle damage marker genes [cysteine- and glycine-rich protein 3 (CSRP3), CARP, HSP70, and IL-6] as well as a calcineurin signaling pathway marker (RCAN1). Baseline mRNA content of CSRP3 and MyoD1 was 49 + or - 12 and 67 + or - 25% higher in the XX compared with the RR group (P = 0.01-0.045). However, satellite cell number was not different between XX and RR individuals. After eccentric exercise, XX individuals tended to have higher serum CK activity (P = 0.10) and had higher pain scores than RR individuals. However, CSRP3 (P = 0.058) and MyoD1 (P = 0.08) mRNA expression tended to be higher after training in RR individuals compared with XX alpha-actinin-3-deficient subjects. This study suggests a protective role of alpha-actinin-3 protein in muscle damage after eccentric training and an improved stress-sensor signaling, although effects are small.


Assuntos
Actinina/metabolismo , Exercício Físico , Contração Muscular , Músculo Esquelético/metabolismo , Actinina/genética , Biomarcadores/sangue , Biópsia , Creatina Quinase/sangue , Citoproteção , Proteínas de Ligação a DNA , Regulação da Expressão Gênica , Homozigoto , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Masculino , Contração Muscular/genética , Fadiga Muscular , Fibras Musculares de Contração Rápida/metabolismo , Fibras Musculares de Contração Rápida/patologia , Proteínas Musculares/genética , Força Muscular , Músculo Esquelético/patologia , Dor/metabolismo , Dor/patologia , Medição da Dor , Fenótipo , Polimorfismo Genético , RNA Mensageiro/metabolismo , Células Satélites de Músculo Esquelético/metabolismo , Células Satélites de Músculo Esquelético/patologia , Fatores de Tempo , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...