Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-320762

RESUMO

Coronaviruses infect many different species including humans. The last two decades have seen three zoonotic coronaviruses with SARS-CoV-2 causing a pandemic in 2020. Coronaviral non-structural proteins (nsp) built up the replication-transcription complex (RTC). Nsp7 and nsp8 interact with and regulate the RNA-dependent RNA-polymerase and other enzymes in the RTC. However, the structural plasticity of nsp7+8 complex has been under debate. Here, we present the framework of nsp7+8 complex stoichiometry and topology based on a native mass spectrometry and complementary biophysical techniques of nsp7+8 complexes from seven coronaviruses in the genera Alpha- and Betacoronavirus including SARS-CoV-2. Their complexes cluster into three groups, which systematically form either heterotrimers or heterotetramers or both, exhibiting distinct topologies. Moreover, even at high protein concentrations mainly heterotetramers are observed for SARS-CoV-2 nsp7+8. From these results, the different assembly paths can be pinpointed to specific residues and an assembly model is proposed.

2.
J Bacteriol ; 187(18): 6565-70, 2005 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16159791

RESUMO

A deletion mutation in the gene rpoZ of Mycobacterium smegmatis causes reduced growth rate and a change in colony morphology. During purification of RNA polymerase from the mutant strain, the beta' subunit undergoes fragmentation but the fragments remain associated with the enzyme and maintain it in an active state until the whole destabilized assembly breaks down in the final step of purification. Complementation of the mutant strain with an integrated copy of the wild-type rpoZ brings back the wild-type colony morphology and improves the growth rate and activity of the enzyme, and the integrity of the beta' subunit remains unaffected.


Assuntos
RNA Polimerases Dirigidas por DNA/genética , Deleção de Genes , Mycobacterium smegmatis/genética , RNA Polimerases Dirigidas por DNA/deficiência , Mycobacterium smegmatis/enzimologia
3.
J Biochem Biophys Methods ; 62(1): 51-62, 2005 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-15656943

RESUMO

The recognition of DNA is the first and most important condition for biological applications, including transcription and translation regulators and DNA sensors. For this purpose, we have developed few systems where we were able to immobilize long double-stranded DNA (dsDNA) successfully to the surfaces of different solid substrates. To achieve this, we have chosen polystyrene beads and standard Langmuir-Blodgett monolayer of Zn-arachidate. In the first attempt, variant of T7 DNA containing one strong promoter A1 for Escherichia coli RNA polymerase was immobilised on uniform polystyrene microspheres (0.31 microm diameter) by covalent grafting. In the latter case, Zn(II) is bound to arachidic acid through charge neutralization. Since tetrahedral Zn(II) participates in DNA recognition through coordination, we have been able to layer DNA over the Zn-arachidate monolayer. The successful immobilization of DNAs on these different substrates was visualized under fluorescence microscope. These immobilized DNAs were used as a template to study in vitro transcription reaction and thus we introduce a new strategy for the study of transcription in heterogeneous phase.


Assuntos
Bacteriófago T7/genética , Sondas de DNA/química , DNA Viral/química , Membranas Artificiais , Transcrição Gênica , Adsorção , Materiais Revestidos Biocompatíveis/química , Sondas de DNA/genética , DNA Viral/genética , DNA Viral/ultraestrutura , RNA Polimerases Dirigidas por DNA/química , Ácidos Eicosanoicos/química , Microesferas
4.
Langmuir ; 20(14): 5891-6, 2004 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-16459606

RESUMO

Here, we report a system we have developed where long double-stranded DNAs (dsDNAs) are immobilized on a monolayer of Zn-arachidate. We have applied the Langmuir-Blodgett technique to form the monolayer of Zn-arachidate where Zn(II) is bound to arachidic acid through charge neutralization. Because tetrahedral Zn(II) participates in DNA recognition through coordination, we have been able to layer DNA over the Zn-arachidate monolayer. The DNA layer shows a typical compression and expansion cycle in a concentration-dependent fashion. Interestingly, the DNA monolayer is available for enzymatic degradation by DNaseI. The detection of DNA and its accessibility towards biological reaction is demonstrated by imaging through fluorescence microscopy. The conformation of the DNA, immobilized on the monolayer, was studied with the help of atomic force microscopy (AFM). We observed that the dsDNAs were aligned in a stretched manner on the surface. To investigate further, we also demonstrate here that the small single-stranded DNA (ssDNA) immobilized on the air-water interface can act as a target molecule for the complementary ssDNA present in the subphase. The study of DNA hybridization done with the help of fluorescence spectroscopy clearly supports the AFM characterization.


Assuntos
DNA Bacteriano/química , Desoxirribonuclease I/química , Membranas Artificiais , Ácidos Eicosanoicos/química , Vidro/química , Propriedades de Superfície , Zinco/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...