Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-39023009

RESUMO

Fabricating Janus nanoparticle-functionalized fabrics with UV protection, strength enhancement, self-cleaning properties, and wash durability, with a biocompatible nature, is crucial in modern functional fabrics engineering. Particularly, tailoring multifunctional nanoparticles capable of exhibiting several distinct properties, utilizing low-cost raw materials, and adhering to green chemistry principles is pivotal. A fabrication strategy for developing multifunctional reactive Janus nanoparticles, utilizing waste-derived natural polyphenol (quercetin-3-glucuronide, myricetin-3-galactoside, gossypin, phlorizin, kaempferol, myricetin-3-arabinoside)-integrated zinc-silica core-shell Janus nanoparticles with UV protection, strength enhancement, and self-cleaning properties, is proposed. Polyphenols were utilized as sustainable precursors for synthesizing zinc-polyphenol complexes, which were then encapsulated within a silica shell to form a core-shell structure. Furthermore, Janus particles were created by introducing a bifunctional layer with half amine/carboxylic acid and half methyl terminals, imparting reactive hydrophilic and hydrophobic properties. Janus-coated textiles and leather exhibited significant attenuation of harmful UV radiation, with water contact angle measurements confirming improved water repellency. The coexistence of natural phenols and bifunctional groups within a material bolstered textile strength, fostering superior adhesion and markedly enhancing wash durability. This eco-friendly approach, utilizing waste-derived materials, presents a promising solution for sustainable textile engineering with enhanced performance in UV protection and water resistance, thereby contributing to the advancement of green nanotechnology in textile applications.

2.
Environ Sci Pollut Res Int ; 29(23): 35382-35395, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35060060

RESUMO

Increased concern over the use of metal salts such as chromium, zirconium, and aluminum for tanning of hides and skins has made the leather production industry to be constantly on the lookout for organic tanning agents in place of the inorganic system. Though glutaraldehyde has been looked at as a viable option, it still lags in imparting superior strength properties to the leather and also it has been reported to have inherent toxicity. With that concept in view, this research work focuses on the usage of glyoxal along with synthetic tanning agents as a replacement for glutaraldehyde and other inorganic tanning systems. The offer level and starting pH for the glyoxal tanning process was optimized as 6% (w/w) and 5.0, respectively, and the shrinkage temperature of the collagen was found to be around 80 °C. Additionally, the controlled shrunken grain effect of the aldehyde tanning system was explored by changing the pH of the process, which helped to improve the thickness of low-grade thinner raw materials by up to 40%. The mechanism for the shrunken grain effect has also been proposed in this work by studying the dimensional changes occurring in the leather matrix upon treating skin/hide with glyoxal at different pH levels. The mechanical and strength properties of the leather were found to be better than the glutaraldehyde tanning system. The BOD/COD ratio of wastewater generated from the glyoxal process was found to be greater than 0.3 making them easily treatable. Considering all these factors, compact glyoxal-based tanning along with synthetic tanning agents can be a game-changing technology for the leather processing industry.


Assuntos
Glioxal , Curtume , Cromo/análise , Glutaral , Resíduos Industriais/análise , Indústrias
3.
J Hazard Mater ; 405: 124231, 2021 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-33129600

RESUMO

Developing value-added material from industrial waste is one of the sustainable ways of recycling solid waste produced from the leather industry. Noise which makes a considerable negative impact in the day to day life of people needs immediate attention where the sound absorbers play a vital role. Nanofibers can be used as sound absorbers due to their properties like porosity and high surface area. In this study, collagen hydrolysate extracted from waste leather trimmings was utilized to produce multilayer hybrid sound-absorbing material. Collagen hydrolysate was electrospun along with polyvinyl alcohol (PVA) and the layer was sandwiched between polyacrylonitrile (PAN) nanofibrous layers. The hierarchical structure of the composite is more porous on outer layers than medium porous inner collagen hydrolysate- PVA layer. The hybrid material was characterized using various experimental techniques and the sound absorption was measured using two-microphone impedance tube method. From acoustic measurements, it was revealed that the composite showed improved sound absorption in the frequency range of 800-2500 Hz due to its varying pore size. Hence, the leather trimmings as a component of sound-absorbing material creates an innovative solution for discarded leather waste and they can be used in practical applications like room acoustics.

4.
J Phys Chem B ; 123(7): 1708-1717, 2019 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-30689387

RESUMO

The design of nanocarriers containing hydrophobic and hydrophilic compounds represents a powerful tool for cocktail delivery. Water-in-oil-in-water emulsions constitute an attractive approach, as they offer dual encapsulation and provide a template for the constitution of a capsule. A limitation in the preparation of nano double emulsions is their instability resulting from high curvature radii. In this work, silica nanocapsules (NCs) stable over several months were synthesized. This was achieved by exploiting a double emulsion in which the oil phase is constituted by a combination of oils presenting several volatilities. The decrease of oil droplet size by evaporation favored the deposition of a silica layer at the nanoscale interface. The release of the payload obtained by drying the capsules was investigated by fluorescence spectroscopy. Understanding the interactions between proteins and nanocapsules is a fundamental point for many biological applications. Nanocapsules were exposed to two model proteins, which were bovine serum albumin (BSA) and lysozyme (Ly). These proteins, presenting differences in charges and size, showed distinctive arrangements onto the nanocapsules. Moreover, we have studied changes in α-helix and ß-sheet content, which divulged the interactions between the proteins and the nanocapsules.


Assuntos
Muramidase/química , Nanocápsulas/química , Soroalbumina Bovina/química , Dióxido de Silício/química , Adsorção , Animais , Bovinos , Emulsões/química , Interações Hidrofóbicas e Hidrofílicas , Muramidase/metabolismo , Óleos/química , Soroalbumina Bovina/metabolismo , Água/química
5.
Colloids Surf B Biointerfaces ; 172: 734-742, 2018 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-30248644

RESUMO

Nano sized bio-composites containing inorganic particles conjugated with polymer and protein are considered as potential material for tissue engineering systems like bone repair and advanced drug delivery. More specifically, hydroxyapatite (HAp), a well known as the strong bioactive material has limitations on reactivity towards biological systems. Thus, this work explains the interaction betweena natural biomaterial Collagen and poly (lactide co-glycolide)-Hydroxyapatite (HAp) composite. PLGA/HAp composite was fabricated by in-situ polymerization of DL-lactide, glycolide and HAp nanoparticles. The prepared PLGA/HAp composite was examined for physico-chemical properties by FTIR, DSC, SEM, and DLS. The microscopic image confirms the positioning of a highly ordered structure containing Coll-PLGA/HAp that leads to enhancement in thermal stability of collagen. The nature of bonding and structural orientation of bio-composite was thoroughly investigated by FTIR and SEM. Toxicity of bio-composites on A549 human lung cancer cell line and L929 mouse normal cell line were analysed, and results showed a decreasing trend in the cell viability, on increasing the concentration of bio-composite. As an effective option for tissue engineering, the scaffold was prepared by vacuum drying method. Porosity and tensile strength measurements of scaffold reveal that non-toxic characteristics of bio-composite, excellent pore distribution of scaffold and thermal resistivity make it a versatile material for tissue engineering.


Assuntos
Materiais Biocompatíveis/química , Colágeno/química , Durapatita/química , Nanoestruturas/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Polímeros/química , Animais , Materiais Biocompatíveis/toxicidade , Varredura Diferencial de Calorimetria , Linhagem Celular , Sobrevivência Celular , Difusão Dinâmica da Luz , Humanos , Camundongos , Nanoestruturas/ultraestrutura , Conformação Proteica , Estabilidade Proteica , Ratos , Espectroscopia de Infravermelho com Transformada de Fourier , Propriedades de Superfície , Temperatura , Alicerces Teciduais/química , Testes de Toxicidade , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA