Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 16(6): 6958-6970, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38306454

RESUMO

This study presents a novel synthesis of self-standing MoP and Mo2N heterostructured electrocatalysts with enhanced stability and catalytic performance. Facilitated by the controlled phase and interfacial microstructure, the seamless structures of these catalysts minimize internal resistivity and prevent local corrosion, contributing to increased stability. The chemical synthesis proceeds with an etching step to activate the surface, followed by phosphor-nitriding in a chemical vapor deposition chamber to produce MoP-Mo2N@Mo heterostructured electrocatalysts. X-ray diffraction analyses confirmed the presence of MoP, Mo2N, and Mo phases in the electrocatalyst. Morphology studies using scanning electron microscopy characterize the hierarchical growth of structures, indicating successful formation of the heterostructure. X-ray photoelectron spectroscopy (XPS) analyses of the as-synthesized and postcatalytic activity samples reveal the chemical shift in terms of the binding energy (BE) of the Mo 3d XPS peak, especially after catalytic activity. The XPS BE shifts are attributed to changes in the oxidation state, electron transfer, and surface reconstruction during catalysis. Electrochemical evaluation of the catalysts indicates the superior performance of the MoP-Mo2N@Mo heterostructured catalyst in hydrogen evolution reactions (HER), with lower overpotentials and enhanced Tafel slopes. The stability tests reveal changes in double layer capacitance over time, suggesting surface reconstruction and an increased active surface area during catalysis. Operando electrochemical impedance spectroscopy (EIS) further elucidates the dynamic changes in resistance and charge transfer during HER. Overall, a comprehensive understanding of the synthesis, characterization, and electrochemical behavior of the developed MoP-Mo2N@Mo heterostructured electrocatalyst, as presented in this work, highlights its potential utilization in sustainable energy applications.

2.
Acta Crystallogr E Crystallogr Commun ; 79(Pt 7): 633-636, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37601573

RESUMO

The title compound, 1-(4-bromo-phen-yl)but-3-yn-1-one, C10H7BrO, crystallizes in the monoclinic space group P21/n with one mol-ecule in the asymmetric unit. The structure displays a planar geometry. The crystal structure is consolidated by C-H⋯O hydrogen bonding and a short C=O⋯C≡C (acetyl-ene) contacts. Hirshfeld surface analysis indicates that H⋯H, C⋯H/H⋯C and H⋯Br/Br⋯H inter-actions play a more important role in consolidating the crystal structure compared to H⋯O/O⋯H and C⋯C contacts.

3.
Inorg Chem ; 62(30): 11837-11848, 2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37450403

RESUMO

The design and development of electromagnetic and magnetoelectric materials with enhanced properties and performance are desirable for numerous technologies, which are based on integrated electromagnetic materials and components. Nevertheless, engineering the crystalline materials with multi-complex chemistry and multiple cations is challenging. In this context, herein, we report on the effect of rare-earth (RE) cations, namely, Dy3+ and Tb3+, co-substituted into the Co-Ni-mixed ferrite materials for applications in stress/torque sensors. The RE-cations that co-substituted Co-Ni-ferrite materials with a composition of Ni0.8Co0.2Fe2-x(Dy1-yTby)xO4 (x = 0-0.1, y = 0.3; NCFDT) were prepared by the high-temperature solid-state chemical reaction method. The effect of variable composition (x) on the structure, morphology, chemical bonding, and magnetic properties of NCFDT materials is investigated in detail, and the structure-property optimization enabled realizing magnetostrictive NCFDT for sensor applications. X-ray diffraction analysis coupled with Rietveld refinement confirms the face-centered cubic crystal structure. Chemical bonding analysis made using Raman spectroscopic and Fourier transform infrared spectroscopic measurements validates the active modes corresponding to the spinel ferrite structure. The effect of Dy3+ and Tb3+ substitution is primarily seen in the grain size (range of 5-15 µm), as evident from the scanning electron microscopy patterns. Energy-dispersive spectroscopy confirms the presence of all constituent elements with expected composition and without any impurities. The magnetic property measurements indicate that the remnant magnetization (Mr) increases from 0.06 to 0.17 µB/f.u. with the rare-earth (Dy and Tb) substitution and has achieved the maximum squareness ratio (Mr/Ms) = 0.097 at x = 0.10. To validate their application potential in magneto-mechanical sensors, we have measured the magnetostriction coefficients (λ11 and λ12), which demonstrate high values of λ11 = -92 ppm (along the parallel direction) and λ12 = 66 ppm (along the perpendicular direction) for NCFDT with x = 0.05 at H = 7000 Oe. In addition, the maximum value of strain sensitivity is observed, particularly dλ11dH = -0.764 nm/A whereas dλ12dH = 0.361 nm/A. The correlation between strain sensitivity (dλ/dH) and susceptibility (dM/dH), as derived from magnetostriction and magnetization measurements, respectively, is established. The outcomes of this study indicate that Ni-Co-ferrites with Dy3+ and Tb3+ substitution are suitable for stress/torque sensors. These NCFDT ferrites may also be useful as a necessary constitutive phase for the manufacture of magnetoelectric composite materials, making them appropriate for magnetic field sensors and energy harvesting applications.

4.
Small ; 19(37): e2300549, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37203304

RESUMO

Next-generation electronics and energy technologies can now be developed as a result of the design, discovery, and development of novel, environmental friendly lead (Pb)-free ferroelectric materials with improved characteristics and performance. However, there have only been a few reports of such complex materials' design with multi-phase interfacial chemistry, which can facilitate enhanced properties and performance. In this context, herein, novel lead-free piezoelectric materials (1-x)Ba0.95 Ca0.05 Ti0.95 Zr0.05 O3 -(x)Ba0.95 Ca0.05 Ti0.95 Sn0.05 O3 , are reported, which are represented as (1-x)BCZT-(x)BCST, with demonstrated excellent properties and energy harvesting performance. The (1-x)BCZT-(x)BCST materials are synthesized by high-temperature solid-state ceramic reaction method by varying x in the full range (x = 0.00-1.00). In-depth exploration research is performed on the structural, dielectric, ferroelectric, and electro-mechanical properties of (1-x)BCZT-(x)BCST ceramics. The formation of perovskite structure for all ceramics without the presence of any impurity phases is confirmed by X-ray diffraction (XRD) analyses, which also reveals that the Ca2+ , Zr4+ , and Sn4+ are well dispersed within the BaTiO3 lattice. For all (1-x)BCZT-(x)BCST ceramics, thorough investigation of phase formation and phase-stability using XRD, Rietveld refinement, Raman spectroscopy, high-resolution transmission electron microscopy (HRTEM), and temperature-dependent dielectric measurements provide conclusive evidence for the coexistence of orthorhombic + tetragonal (Amm2 + P4mm) phases at room temperature. The steady transition of Amm2 crystal symmetry to P4mm crystal symmetry with increasing x content is also demonstrated by Rietveld refinement data and related analyses. The phase transition temperatures, rhombohedral-orthorhombic (TR-O ), orthorhombic- tetragonal (TO-T ), and tetragonal-cubic (TC ), gradually shift toward lower temperature with increasing x content. For (1-x)BCZT-(x)BCST ceramics, significantly improved dielectric and ferroelectric properties are observed, including relatively high dielectric constant εr ≈ 1900-3300 (near room temperature), εr ≈ 8800-12 900 (near Curie temperature), dielectric loss, tan δ ≈ 0.01-0.02, remanent polarization Pr ≈ 9.4-14 µC cm-2 , coercive electric field Ec ≈ 2.5-3.6 kV cm-1 . Further, high electric field-induced strain S ≈ 0.12-0.175%, piezoelectric charge coefficient d33 ≈ 296-360 pC N-1 , converse piezoelectric coefficient ( d 33 ∗ ) ave ${( {d_{33}^*} )}_{{\rm{ave}}}$ ≈ 240-340 pm V-1 , planar electromechanical coupling coefficient kp ≈ 0.34-0.45, and electrostrictive coefficient (Q33 )avg ≈ 0.026-0.038 m4 C-2 are attained. Output performance with respect to mechanical energy demonstrates that the (0.6)BCZT-(0.4)BCST composition (x = 0.4) displays better efficiency for generating electrical energy and, thus, the synthesized lead-free piezoelectric (1-x)BCZT-(x)BCST samples are suitable for energy harvesting applications. The results and analyses point to the outcome that the (1-x)BCZT-(x)BCST ceramics as a potentially strong contender within the family of Pb-free piezoelectric materials for future electronics and energy harvesting device technologies.

5.
ACS Omega ; 8(13): 11709-11716, 2023 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-37033848

RESUMO

Using detailed Raman scattering analyses, the effect of tin (Sn) incorporation on the crystal structure, chemical bonding/inhomogeneity, and single-phase versus multiphase formation of gallium oxide (Ga2O3) compounds is reported. The Raman characterization of the Sn-mixed Ga2O3 polycrystalline compounds (0.00 ≤ x ≤ 0.30), which were produced by the high-temperature solid-state synthesis method, indicated that the Sn-induced changes in the chemical bonding and phase segregation were significant. Furthermore, the evolution of Sn-O bonds with increasing Sn concentration (x) was confirmed. While the monoclinic ß-Ga2O3 was unperturbed for lower x values, Raman spectra revealed the nucleation of a composite with a distinct SnO2 secondary phase. A higher Sn content led to the formation of a Ga-Sn-O + SnO2 mixed phase compound, which was reflected in shifts in the high-frequency stretching and bending of the GaO4 tetrahedra that structurally formed the ß-Ga2O3 phase. Thus, a chemical composition/phase/chemical bonding correlation was established for the Sn-incorporated Ga2O3 compounds.

6.
ACS Appl Mater Interfaces ; 15(17): 20925-20945, 2023 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-37067333

RESUMO

A comprehensive and comparative exploration research performed, aiming to elucidate the fundamental mechanisms of rare-earth (RE) metal-ion doping into Li4Ti5O12 (LTO), reveals the enhanced electrochemical performance of the nanocrystalline RE-LTO electrodes in high-power Li-ion batteries. Pristi ne Li4Ti5O12 (LTO) and rare-earth metal-doped Li4-x/3Ti5-2x/3LnxO12 (RE-LTO with RE = Dy, Ce, Nd, Sm, and Eu; x ≈ 0.1) nanocrystalline anode materials were synthesized using a simple mechanochemical method and subsequent calcination at 850 °C. The X-ray diffraction (XRD) patterns of pristine and RE-LTO samples exhibit predominant (111) orientation along with other characteristic peaks corresponding to cubic spinel lattice. No evidence of RE-doping-induced changes was seen in the crystal structure and phase. The average crystallite size for pristine and RE-LTO samples varies in the range of 50-40 nm, confirming the formation of nanoscale crystalline materials and revealing the good efficiency of the ball-milling-assisted process adopted to synthesize nanoscale particles. Raman spectroscopic analyses of the chemical bonding indicate and further validate the phase structural quality in addition to corroborating with XRD data for the cubic spinel structure formation. Transmission electron microscopy (TEM) reveals that both pristine and RE-LTO particles have a similar cubic shape, but RE-LTO particles are better interconnected, which provide a high specific surface area for enhanced Li+-ion storage. The detailed electrochemical characterization confirms that the RE-LTO electrodes constitute promising anode materials for high-power Li-ion batteries. The RE-LTO electrodes deliver better discharge capacities (in the range of 172-198 mAh g-1 at 1C rate) than virgin LTO (168 mAh g-1). Among them, Eu-LTO provides the best discharge capacity of 198 mAh g-1 at a 1C rate. When cycled at a high current rate of 50C, all RE-LTO electrodes show nearly 70% of their initial discharge capacities, resulting in higher rate capability than virgin LTO (63%). The results discussed in this work unfold the fundamental mechanisms of RE doping into LTO and demonstrate the enhanced electrochemical performance derived via chemical composition tailoring in RE-LTO compounds for application in high-power Li-ion batteries.

7.
ACS Appl Mater Interfaces ; 15(18): 22036-22050, 2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-37099741

RESUMO

The projection of developing sustainable and cost-efficient electrocatalysts for hydrogen production is booming. However, the full potential of electrocatalysts fabricated from earth-abundant metals has yet to be exploited to replace Pt-group metals due to inadequate efficiency and insufficient design strategies to meet the ever-increasing demands for renewable energies. To improve the electrocatalytic performance, the primary challenge is to optimize the structure and electronic properties by enhancing the intrinsic catalytic activity and expanding the active catalytic surface area. Herein, we report synthesizing a 3D nanoarchitecture of aligned Ni5P4-Ni2P/NiS (plate/nanosheets) using a phospho-sulfidation process. The durability and unique design of prickly pear cactus in desert environments by adsorbing moisture through its extensive surface and ability to bear fruits at the edges of leaves inspire this study to adopt a similar 3D architecture and utilize it to design an efficient heterostructure catalyst for HER activity. The catalyst comprises two compartments of the vertically aligned Ni5P4-Ni2P plates and the NiS nanosheets, resembling the role of leaves and fruits in the prickly pear cactus. The Ni5P4-Ni2P plates deliver charges to the interface areas, and the NiS nanosheets significantly influence Had and transfer electrons for the HER activity. Indeed, the synergistic presence of heterointerfaces and the epitaxial NiS nanosheets can substantially improve the catalytic activity compared to nickel phosphide catalysts. Notably, the onset overpotential of the best-modified ternary catalysts exhibits (35 mV) half the potential required for nickel phosphide catalysts. This promising catalyst demonstrates 70 and 115 mV overpotentials to attain current densities of 10 and 100 mA cm-2, respectively. The obtained Tafel slope is 50 mV dec-1, and the measured double-layer capacitance from cyclic voltammetry (CV) for the best ternary electrocatalyst is 13.12 mF cm-2, 3 times more than the nickel phosphide electrocatalyst. Further, electrochemical impedance spectroscopy (EIS) at the cathodic potentials reveals that the lowest charge transfer resistance is linked to the best ternary electrocatalyst, ranging from 430 to 1.75 Ω cm-2. This improvement can be attributed to the acceleration of the electron exchangeability at the interfaces. Our findings demonstrate that the epitaxial NiS nanosheets expand the active catalytic surface area and simultaneously elevate the intrinsic catalytic activity by introducing heterointerfaces, which leads to accommodating more Had at the interfaces.

8.
ACS Appl Mater Interfaces ; 15(12): 15691-15706, 2023 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-36939288

RESUMO

This work reports on the effect of substituting a low-anisotropic and low-magnetic cation (Ni2+, 2µB) by a high-anisotropic and high-magnetic cation (Co2+, 3µB) on the crystal structure, phase, microstructure, magnetic properties, and magnetostrictive properties of NiFe2O4 (NFO). Co-substituted NFO (Ni1-xCoxFe2O4, NCFO, 0 ≤ x ≤ 1) nanomaterials were synthesized using glycine-nitrate autocombustion followed by postsynthesis annealing at 1200 °C. The X-ray diffraction measurements coupled with Rietveld refinement analyses indicate the significant effect of Co-substitution for Ni, where the lattice constant (a) exhibits a functional dependence on composition (x). The a-value increases from 8.3268 to 8.3751 Å (±0.0002 Å) with increasing the "x" value from 0 to 1 in NCFO. The a-x functional dependence is derived from the ionic-size difference between Co2+ and Ni2+, which also induces grain agglomeration, as evidenced in electron microscopy imaging. The chemical bonding of NCFO, as probed by Raman spectroscopy, reveals that Co(x)-substitution induced a red shift of the T2g(2) and A1g(1) modes, and it is attributed to the changes in the metal-oxygen bond length in the octahedral and tetrahedral sites in NCFO. X-ray photoelectron spectroscopy confirms the presence of Co2+, Ni2+, and Fe3+ chemical states in addition to the cation distribution upon Co-substitution in NFO. Chemical homogeneity and uniform distribution of Co, Ni, Fe, and O are confirmed by EDS. The magnetic parameters, saturation magnetization (MS), remnant magnetization (Mr), coercivity (HC), and anisotropy constant (K1) increased with increasing Co-content "x" in NCFO. The magnetostriction (λ) also follows a similar behavior and almost linearly varies from -33 ppm (x = 0) to -227 ppm (x = 1), which is primarily due to the high magnetocrystalline anisotropy contribution from Co2+ ions at the octahedral sites. The magnetic and magnetostriction measurements and analyses indicate the potential of NCFO for torque sensor applications. Efforts to optimize materials for sensor applications indicate that, among all of the NCFO materials, Co-substitution with x = 0.5 demonstrates high strain sensitivity (-2.3 × 10-9 m/A), which is nearly 2.5 times higher than that obtained for their intrinsic counterparts, namely, NiFe2O4 (x = 0) and CoFe2O4 (x = 1).

9.
ACS Omega ; 7(48): 43813-43819, 2022 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-36506167

RESUMO

We report on the simple, single-step, and cost-effective fabrication, characterization, and performance evaluation of cobalt ferrite (CoFe2O4; CFO) nanocrystalline (NC) thin films on a flexible mica substrate. The chemical solution-based drop-casting method employed to fabricate crystalline CFO films and their characterization was performed by studying the phase formation, surface morphology, and magnetic parameters, while sensor applicability was evaluated using combined magnetic and magnetostrictive properties. X-ray diffraction (XRD) indicates the single-phase and nanocrystalline nature of CFO films, where the crystallite size is ∼60 nm. The optimum conditions employed resulted in CFO NC films with surface particles exhibiting a spherical shape morphology with a homogeneous size distribution, as revealed by scanning electron microscopy analyses. Raman spectroscopic characterization of the chemical bonding indicates all of the active bands that are characteristic of the ferrite phase confirm the spinel structure, which is in agreement with XRD studies. The saturation magnetization (M S) and coercivity (H C), which are extracted from the field-dependent magnetization data, of CFO NC films were found to be 15.8 emu/g and 1.6 kOe, respectively, while the first-order magnetocrystalline anisotropy constant K 1 was ∼1.07 × 106 erg/cm3. The magnetostriction strain curve indicates that the CFO NC films exhibit a strain value of ∼86 ppm at an applied magnetic field of 8 kOe, indicating their suitability for flexible sensor devices.

10.
Inorg Chem ; 61(48): 19319-19332, 2022 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-36415181

RESUMO

Designing electromagnetic materials, particularly those based on transition-metal-containing spinel ferrites, with a controlled structure, phase, and chemistry at the nanoscale dimensions while realizing enhanced electrical and magnetic properties continues to be a challenging problem. Herein, we report on the synthesis and structure-property correlation of dysprosium (Dy)-substituted iron-rich cobalt ferrite (Co0.8Fe2.2-xDyxO4; CFDO; x = 0.000-0.100) oxides with variable Dy3+ concentration. Chemical bonding analyses of CFDO nanomaterials using Raman spectroscopic analyses supported the spinel phase formation with high quality. Cation distribution determined from Mössbauer spectroscopy reveals the fact that Dy3+ occupies the octahedral site of the spinel lattice. Saturation magnetization (Ms) values calculated using Neel's two-sublattice model and cation distribution derived from Mossbauer's studies correlate well with the magnetization values obtained from SQUID measurements. The B-site hyperfine field decreases from 52.24 ± 0.10 to 49.26 ± 0.00 T, as evidenced by the Mössbauer spectra, with Dy substitution, which decreases the Fe-ion occupancy from the octahedral site of CFDO. Frequency-dependent dielectric constant indicates electron hopping in the grain interior, which ceases above 6.3 kHz. Dielectric measurements indicate that these CFDO compounds are useful for absorption at higher frequencies. Thus, using the combined approach based on Raman and Mössbauer spectroscopic analyses, the present work elucidates the structure, chemical bonding, and magnetic properties of Dy-substituted Fe-rich cobalt ferrite. CFDO may serve as a model system to apply to a class of Fe-rich ferromagnetic nanomaterials for electromagnetic and sensor applications.

11.
Nanomaterials (Basel) ; 12(17)2022 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-36080053

RESUMO

The influence of oleylamine (OLA) concentration on the crystallography, morphology, surface chemistry, chemical bonding, and magnetic properties of solvothermal synthesized CoFe2O4 (CFO) nanoparticles (NPs) has been thoroughly investigated. Varying OLA concentration (0.01-0.1 M) resulted in the formation of cubic spinel-structured CoFe2O4 NPs in the size-range of 20-14 (±1) nm. The Fourier transform spectroscopic analyses performed confirmed the OLA binding to the CFO NPs. The thermogravimetric measurements revealed monolayer and multilayer coating of OLA on CFO NPs, which were further supported by the small-angle X-ray scattering measurements. The magnetic measurements indicated that the maximum saturation (MS) and remanent (Mr) magnetization decreased with increasing OLA concentration. The ratio of maximum dipolar field (Hdip), coercivity (HC), and exchanged bias field (Hex) (at 10 K) to the average crystallite size (Dxrd), i.e., (Hdip/Dxrd), (HC/Dxrd), and (Hex/Dxrd), increased linearly with OLA concentration, indicating that OLA concurrently controls the particle size and interparticle interaction among the CFO NPs. The results and analyses demonstrate that the OLA-mediated synthesis allowed for modification of the structural and magnetic properties of CFO NPs, which could readily find potential application in electronics and biomedicine.

12.
ACS Omega ; 7(36): 32816-32826, 2022 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-36120052

RESUMO

We report on the crystal structure, phase stability, surface morphology, microstructure, chemical bonding, and electronic properties of gallium oxide (Ga2O3) nanofibers made by a simple and economically viable electrospinning process. The effect of processing parameters on the properties of Ga2O3 nanofibers were evaluated by scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy (XPS), and Raman spectroscopy. Thermal treatments in the range of 700-900 °C induce crystallization of amorphous fibers and lead to phase stabilization of α-GaOOH, ß-Ga2O3, or mixtures of these phases. The electron diffraction analyses coupled with XPS indicate that the transformation sequence progresses by forming amorphous fibers, which then transform to crystalline fibers with a mixture of α-GaOOH and ß-Ga2O3 at intermediate temperatures and fully transforms to the ß-Ga2O3 phase at higher temperatures (800-900 °C). Raman spectroscopic analyses corroborate the structural evolution and confirm the high chemical quality of the ß-Ga2O3 nanofibers. The surface analysis by XPS studies indicates that the hydroxyl groups are present for the as-synthesized samples, while thermal treatment at higher temperatures fully removes those hydroxyl groups, resulting in the formation of ß-Ga2O3 nanofibers.

13.
ACS Omega ; 7(8): 6549-6559, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-35252651

RESUMO

We demonstrate an approach based on substituting a magnetic cation with a carefully chosen isovalent non-magnetic cation to derive catalytic activity from otherwise catalytically inactive magnetic materials. Using the model system considered, the results illustratively present that the catalytically inactive but highly magnetic strontium hexaferrite (SrFe12O19; SFO) system can be transformed into a catalytically active system by simply replacing some of the magnetic cation Fe3+ by a non-magnetic cation Al3+ in the octahedral coordination environment in the SFO nanocrystals. The intrinsic SFO and Al-doped SrFe12O19 (SrFe11.5Al0.5O19; Al-SFO) nanomaterials were synthesized using a simple, eco-friendly tartrate-gel technique, followed by thermal annealing at 850 °C for 2 h. The SFO and Al-SFO were thoroughly characterized for their structure, phase, morphology, chemical bonding, and magnetic characteristics using X-ray diffraction, Fourier-transform infrared spectroscopy, and vibrating sample magnetometry techniques. Catalytic performance evaluated toward 4-nitrophenol, which is the toxic contaminant at pharmaceutical industries, reduction reaction using NaBH4 (mild reducing agent), the Al-doped SFO samples exhibit a reasonably good performance compared to intrinsic SFO. The results indicate that the catalytic activity of Al-SFO is due to Al-ions occupying the octahedral sites of the hexaferrite lattice; as these sites are on the surface of the catalyst, they facilitate electron transfer. Furthermore, surface/interface characteristics of nanocrystalline Al-SFO coupled with magnetic properties facilitate the catalyst recovery by simple, inexpensive methods while readily allowing the reusability. Moreover, the activity remains the same even after five successive cycles of experiments. Deriving the catalytic activity from otherwise inactive compounds as demonstrated in the optimized, engineered nanoarchitecture of Al-doped-Sr-hexaferrite may be useful in adopting the approach in exploring further options and designing inexpensive and recyclable catalytic materials for future energy and environmental technologies.

14.
Materials (Basel) ; 15(3)2022 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-35160699

RESUMO

Molybdenum (Mo), which is one among the refractory metals, is a promising material with a wide variety of technological applications in microelectronics, optoelectronics, and energy conversion and storage. However, understanding the structure-property correlation and optimization at the nanoscale dimension is quite important to meet the requirements of the emerging nanoelectronics and nanophotonics. In this context, we focused our efforts to derive a comprehensive understanding of the nanoscale structure, phase, and electronic properties of nanocrystalline Mo films with variable microstructure and grain size. Molybdenum films were deposited under varying temperature (25-500 °C), which resulted in Mo films with variable grain size of 9-22 nm. The grazing incidence X-ray diffraction analyses indicate the (110) preferred growth behavior the Mo films, though there is a marked decrease in hardness and elastic modulus values. In particular, there is a sizable difference in maximum and minimum elastic modulus values; the elastic modulus decreased from ~460 to 260-280 GPa with increasing substrate temperature from 25-500 °C. The plasticity index and wear resistance index values show a dramatic change with substrate temperature and grain size. Additionally, the optical properties of the nanocrystalline Mo films evaluated by spectroscopic ellipsometry indicate a marked dependence on the growth temperature and grain size. This dependence on grain size variation was particularly notable for the refractive index where Mo films with lower grain size fell in a range between ~2.75-3.75 across the measured wavelength as opposed to the range of 1.5-2.5 for samples deposited at temperatures of 400-500 °C, where the grain size is relatively higher. The conductive atomic force microscopy (AFM) studies indicate a direct correlation with grain size variation and grain versus grain boundary conduction; the trend noted was improved electrical conductivity of the Mo films in correlation with increasing grain size. The combined ellipsometry and conductive AFM studies allowed us to optimize the structure-property correlation in nanocrystalline Mo films for application in electronics and optoelectronics.

15.
ACS Omega ; 5(31): 19315-19330, 2020 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-32803025

RESUMO

The authors report on the effect of manganese (Mn) substitution on the crystal chemistry, morphology, particle size distribution characteristics, chemical bonding, structure, and magnetic properties of cobalt ferrite (CoFe2O4) nanoparticles (NPs) synthesized by a simple, cost-effective, and eco-friendly one-pot aqueous hydrothermal method. Crystal structure analyses indicate that the Mn(II)-substituted cobalt ferrites, Co1-x Mn x Fe2O4 (CMFO, x = 0.0-0.5), were crystalline with a cubic inverse spinel structure (space group Fd 3 m ). The average crystallite size increases from 8 to 14 nm with increasing Mn(II) content; the crystal growth follows an exponential growth function while the lattice parameters follow Vegard's law. Chemical bonding analyses made using Raman spectroscopic studies further confirm the cubic inverse spinel phase. The relative changes in specific vibrational modes related to octahedral sites as a function of Mn content suggest a gradual change of measure of inversion of the ferrite lattice at nanoscale dimensions. Small-angle X-ray scattering and electron microscopy revealed a narrow particle size distribution with the spherical shape morphology of the CMFO NPs. The zero-field-cooled and field-cooled magnetic measurements revealed the superparamagnetic behavior of CMFO NPs at room temperature. The sample with x = 0.3 indicates a lower value of blocking temperature (9.16 K) with the improved (maximum) value of saturation magnetization. The results and the structure-composition-property correlation suggest that the economic, eco-friendly hydrothermal approach can be adopted to process superparamagnetic nanostructured magnetic materials at a relatively lower temperature for practical electronic and electromagnetic device applications.

16.
Nanomaterials (Basel) ; 10(7)2020 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-32629967

RESUMO

Niobium (Nb) thin films, which are potentially useful for integration into electronics and optoelectronics, were made by radio-frequency magnetron sputtering by varying the substrate temperature. The deposition temperature (Ts) effect was systematically studied using a wide range, 25-700 °C, using Si(100) substrates for Nb deposition. The direct correlation between deposition temperature (Ts) and electrical properties, surface/interface microstructure, crystal structure, and morphology of Nb films is reported. The Nb films deposited at higher temperature exhibit a higher degree of crystallinity and electrical conductivity. The Nb films' crystallite size varied from 5 to 9 (±1) nm and tensile strain occurs in Nb films as Ts increases. The surface/interface morphology of the deposited Nb films indicate the grain growth and dense, vertical columnar structure at elevated Ts. The surface roughness derived from measurements taken using atomic force microscopy reveal that all the Nb films are characteristically smooth with an average roughness <2 nm. The lowest electrical resistivity obtained was 48 µΩ cm. The correlations found here between growth conditions electrical properties as well as crystal structure, surface/interface morphology, and microstructure, could provide useful information for optimum conditions to produce Nb thin films for utilization in electronics and optoelectronics.

17.
Sci Rep ; 10(1): 178, 2020 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-31932666

RESUMO

Real-time monitoring of combustion products and composition is critical to emission reduction and efficient energy production. The fuel efficiency in power plants and automobile engines can be dramatically improved by monitoring and controlling the combustion environment. However, the development of novel materials for survivability of oxygen sensors at extreme environments and demonstrated rapid response in chemical sensing is a major hindrance for further development in the field. Gallium oxide (Ga2O3), one among the wide band gap oxides, exhibit promising oxygen sensing properties in terms of reproducibility and long term stability. However, the oxygen sensors based on ß-Ga2O3 and other existing materials lack in response time and stability at elevated temperatures. In this context, we demonstrate an approach to design materials based on Ti-doped Ga2O3, which exhibits a rapid response and excellent stability for oxygen sensing at elevated temperatures. We demonstrate that the nanocrystalline ß-Ga2O3 films with 5% Ti significantly improves the response time (~20 times) while retaining the stability and repeatability in addition to enhancement in the sensitivity to oxygen. These extreme environment oxygen sensors with a rapid response time and sensitivity represent key advancement for integration into combustion systems for efficient energy conversion and emission reduction.

18.
Inorg Chem ; 58(6): 3707-3716, 2019 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-30844255

RESUMO

This work unfolds the fundamental mechanisms and demonstrates the tunable optical properties derived via chemical composition tailoring in tungsten (W)-doped gallium oxide (Ga2O3) compounds. On the basis of the detailed investigation, the solubility limits of tungsten (W6+) ion and associated effects on the crystal structure, morphology, and optical properties of W-doped Ga2O3 (Ga2-2 xW xO3, 0.00 ≤ x ≤ 0.25, GWO) compounds are reported. GWO materials were synthesized via a conventional solid-state reaction route, where a two-step calcination is adopted to produce materials with a high structural and chemical quality. X-ray diffraction analyses of sintered GWO compounds reveal the formation of a solid solution of GWO compounds at lower concentrations W ( x ≤ 0.10), while unreacted WO3 secondary phase formation occurs at higher concentrations ( x>0.10). Insolubility of W at higher concentrations ( x ≥ 0.15) is attributed to the difference in formation enthalpies of respective oxides, i.e., Ga2O3 and WO3. GWO compounds exhibit an interesting trend in morphology evolution as a function of W content. While intrinsic Ga2O3 exhibits rod-shaped morphology, W-doped Ga2O3 compounds exhibit nearly spherical-shaped grain morphology. Increasing W content ( x ≥ 0.10) induces morphology transformation from spherical to faceted grains with different facets (square and hexagonal). Relatively larger grain sizes in GWO compounds might be attributed to vacancy assisted enhanced mass transport due to W incorporation and/or WO3 induced liquid phase sintering. Our findings demonstrate a substantial red shift in band gap ( Eg), which is evident from the optical absorption spectra, enabling the wide spectral selectivity of GWO compounds. W 5d orbitals induced sp- d exchange interaction between valence band and conduction band electrons accounts for the substantial red shift in Eg of GWO compounds. Also, with increasing W, Eg decreases linearly, obeying Vegard law up to x = 0.15 and, at this point, an abrupt Eg drop prevails. The nonlinearity ( bowing effect) behavior in Eg beyond x = 0.15 is due to insolubility of W at higher concentrations. The fundamental scientific understanding of the interdependence of synthetic conditions, structure, chemistry, and band gap could be useful to optimize GWO materials for optical, optoelectronic, and photocatalytic device applications.

19.
Inorg Chem ; 57(3): 1029-1039, 2018 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-29338216

RESUMO

We report on the tunable and controlled dielectric properties of iron (Fe)-doped gallium oxide (Ga2O3; Ga1.9Fe0.1O3, referred to as GFO) inorganic compounds. The GFO materials were synthesized using a standard high-temperature, solid-state chemical reaction method by varying the thermochemical processing conditions, namely, different calcination and sintering environments. Structural characterization by X-ray diffraction revealed that GFO compounds crystallize in the ß-Ga2O3 phase. The Fe doping has induced slight lattice strain in GFO, which is evident in structural analysis. The effect of the sintering temperature (Tsint), which was varied in the range of 900-1200 °C, is significant, as revealed by electron microscopy analysis. Tsint influences the grain size and microstructure evolution, which, in turn, influences the dielectric and electrical properties of GFO compounds. The energy-dispersive X-ray spectrometry and mapping data demonstrate the uniform distribution of the elemental composition over the microstructure. The temperature- and frequency-dependent dielectric measurements indicate the characteristic features that are specifically due to Fe doping in Ga2O3. The spreading factor and relaxation time, calculated using Cole-Cole plots, are in the ranges of 0.65-0.76 and 10-4 s, respectively. The results demonstrate that densification and control over the microstructure and properties of GFO can be achieved by optimizing Tsint.

20.
J Appl Microbiol ; 121(6): 1498-1510, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27667746

RESUMO

Increase in invasive fungal infections over the past few years especially in immunocompromised patients prompted the search for new antifungal agents with improved efficacy. Current antifungal armoury includes very few effective drugs like Amphotericin B; new generation azoles, including voriconazole and posaconazole; echinocandins like caspofungin and micafungin to name a few. Azole class of antifungals which target the fungal cell membrane are the first choice of treatment for many years because of their effectiveness. As the fungal cell membrane is predominantly made up of sterols, glycerophospholipids and sphingolipids, the role of lipids in pathogenesis and target identification for improved therapeutics were largely pursued by researchers during the last few years. Present review focuses on cell membrane as an antifungal target with emphasis on membrane biogenesis, structure and function of cell membrane, cell membrane inhibitors, screening assays, recent advances and future prospects.


Assuntos
Antifúngicos/farmacologia , Membrana Celular/efeitos dos fármacos , Antifúngicos/uso terapêutico , Azóis/farmacologia , Azóis/uso terapêutico , Membrana Celular/química , Fungos/química , Fungos/efeitos dos fármacos , Humanos , Micoses/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...