Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Biomolecules ; 14(3)2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38540674

RESUMO

Drug combination therapy shows promise in cancer treatment by addressing drug resistance, reducing toxicity, and enhancing therapeutic efficacy. However, the intricate and dynamic nature of biological systems makes identifying potential synergistic drugs a costly and time-consuming endeavor. To facilitate the development of combination therapy, techniques employing artificial intelligence have emerged as a transformative solution, providing a sophisticated avenue for advancing existing therapeutic approaches. In this study, we developed SynerGNet, a graph neural network model designed to accurately predict the synergistic effect of drug pairs against cancer cell lines. SynerGNet utilizes cancer-specific featured graphs created by integrating heterogeneous biological features into the human protein-protein interaction network, followed by a reduction process to enhance topological diversity. Leveraging synergy data provided by AZ-DREAM Challenges, the model yields a balanced accuracy of 0.68, significantly outperforming traditional machine learning. Encouragingly, augmenting the training data with carefully constructed synthetic instances improved the balanced accuracy of SynerGNet to 0.73. Finally, the results of an independent validation conducted against DrugCombDB demonstrated that it exhibits a strong performance when applied to unseen data. SynerGNet shows a great potential in detecting drug synergy, positioning itself as a valuable tool that could contribute to the advancement of combination therapy for cancer treatment.


Assuntos
Antineoplásicos , Inteligência Artificial , Humanos , Redes Neurais de Computação , Terapia Combinada , Quimioterapia Combinada , Antineoplásicos/farmacologia
2.
Sci Rep ; 14(1): 1668, 2024 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-38238448

RESUMO

Combination therapy has gained popularity in cancer treatment as it enhances the treatment efficacy and overcomes drug resistance. Although machine learning (ML) techniques have become an indispensable tool for discovering new drug combinations, the data on drug combination therapy currently available may be insufficient to build high-precision models. We developed a data augmentation protocol to unbiasedly scale up the existing anti-cancer drug synergy dataset. Using a new drug similarity metric, we augmented the synergy data by substituting a compound in a drug combination instance with another molecule that exhibits highly similar pharmacological effects. Using this protocol, we were able to upscale the AZ-DREAM Challenges dataset from 8798 to 6,016,697 drug combinations. Comprehensive performance evaluations show that ML models trained on the augmented data consistently achieve higher accuracy than those trained solely on the original dataset. Our data augmentation protocol provides a systematic and unbiased approach to generating more diverse and larger-scale drug combination datasets, enabling the development of more precise and effective ML models. The protocol presented in this study could serve as a foundation for future research aimed at discovering novel and effective drug combinations for cancer treatment.


Assuntos
Biologia Computacional , Aprendizado de Máquina , Sinergismo Farmacológico , Biologia Computacional/métodos , Combinação de Medicamentos , Quimioterapia Combinada
3.
Res Sq ; 2023 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-37961281

RESUMO

Combination therapy has gained popularity in cancer treatment as it enhances the treatment efficacy and overcomes drug resistance. Although machine learning (ML) techniques have become an indispensable tool for discovering new drug combinations, the data on drug combination therapy currently available may be insufficient to build high-precision models. We developed a data augmentation protocol to unbiasedly scale up the existing anti-cancer drug synergy dataset. Using a new drug similarity metric, we augmented the synergy data by substituting a compound in a drug combination instance with another molecule that exhibits highly similar pharmacological effects. Using this protocol, we were able to upscale the AZ-DREAM Challenges dataset from 8,798 to 6,016,697 drug combinations. Comprehensive performance evaluations show that Random Forest and Gradient Boosting Trees models trained on the augmented data achieve higher accuracy than those trained solely on the original dataset. Our data augmentation protocol provides a systematic and unbiased approach to generating more diverse and larger-scale drug combination datasets, enabling the development of more precise and effective ML models. The protocol presented in this study could serve as a foundation for future research aimed at discovering novel and effective drug combinations for cancer treatment.

4.
Cancers (Basel) ; 15(16)2023 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-37627077

RESUMO

Deregulated protein kinases are crucial in promoting cancer cell proliferation and driving malignant cell signaling. Although these kinases are essential targets for cancer therapy due to their involvement in cell development and proliferation, only a small part of the human kinome has been targeted by drugs. A comprehensive scoring system is needed to evaluate and prioritize clinically relevant kinases. We recently developed CancerOmicsNet, an artificial intelligence model employing graph-based algorithms to predict the cancer cell response to treatment with kinase inhibitors. The performance of this approach has been evaluated in large-scale benchmarking calculations, followed by the experimental validation of selected predictions against several cancer types. To shed light on the decision-making process of CancerOmicsNet and to better understand the role of each kinase in the model, we employed a customized saliency map with adjustable channel weights. The saliency map, functioning as an explainable AI tool, allows for the analysis of input contributions to the output of a trained deep-learning model and facilitates the identification of essential kinases involved in tumor progression. The comprehensive survey of biomedical literature for essential kinases selected by CancerOmicsNet demonstrated that it could help pinpoint potential druggable targets for further investigation in diverse cancer types.

5.
BMC Cancer ; 22(1): 1211, 2022 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-36434556

RESUMO

BACKGROUND: Vast amounts of rapidly accumulating biological data related to cancer and a remarkable progress in the field of artificial intelligence (AI) have paved the way for precision oncology. Our recent contribution to this area of research is CancerOmicsNet, an AI-based system to predict the therapeutic effects of multitargeted kinase inhibitors across various cancers. This approach was previously demonstrated to outperform other deep learning methods, graph kernel models, molecular docking, and drug binding pocket matching. METHODS: CancerOmicsNet integrates multiple heterogeneous data by utilizing a deep graph learning model with sophisticated attention propagation mechanisms to extract highly predictive features from cancer-specific networks. The AI-based system was devised to provide more accurate and robust predictions than data-driven therapeutic discovery using gene signature reversion. RESULTS: Selected CancerOmicsNet predictions obtained for "unseen" data are positively validated against the biomedical literature and by live-cell time course inhibition assays performed against breast, pancreatic, and prostate cancer cell lines. Encouragingly, six molecules exhibited dose-dependent antiproliferative activities, with pan-CDK inhibitor JNJ-7706621 and Src inhibitor PP1 being the most potent against the pancreatic cancer cell line Panc 04.03. CONCLUSIONS: CancerOmicsNet is a promising AI-based platform to help guide the development of new approaches in precision oncology involving a variety of tumor types and therapeutics.


Assuntos
Inteligência Artificial , Neoplasias Pancreáticas , Masculino , Humanos , Simulação de Acoplamento Molecular , Medicina de Precisão , Oncologia
6.
NPJ Syst Biol Appl ; 8(1): 14, 2022 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-35487924

RESUMO

Genomic profiles of cancer cells provide valuable information on genetic alterations in cancer. Several recent studies employed these data to predict the response of cancer cell lines to drug treatment. Nonetheless, due to the multifactorial phenotypes and intricate mechanisms of cancer, the accurate prediction of the effect of pharmacotherapy on a specific cell line based on the genetic information alone is problematic. Emphasizing on the system-level complexity of cancer, we devised a procedure to integrate multiple heterogeneous data, including biological networks, genomics, inhibitor profiling, and gene-disease associations, into a unified graph structure. In order to construct compact, yet information-rich cancer-specific networks, we developed a novel graph reduction algorithm. Driven by not only the topological information, but also the biological knowledge, the graph reduction increases the feature-only entropy while preserving the valuable graph-feature information. Subsequent comparative benchmarking simulations employing a tissue level cross-validation protocol demonstrate that the accuracy of a graph-based predictor of the drug efficacy is 0.68, which is notably higher than those measured for more traditional, matrix-based techniques on the same data. Overall, the non-Euclidean representation of the cancer-specific data improves the performance of machine learning to predict the response of cancer to pharmacotherapy. The generated data are freely available to the academic community at https://osf.io/dzx7b/ .


Assuntos
Aprendizado de Máquina , Neoplasias , Algoritmos , Genômica , Humanos , Neoplasias/genética
7.
Front Pharmacol ; 13: 837715, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35359869

RESUMO

Computational modeling is an essential component of modern drug discovery. One of its most important applications is to select promising drug candidates for pharmacologically relevant target proteins. Because of continuing advances in structural biology, putative binding sites for small organic molecules are being discovered in numerous proteins linked to various diseases. These valuable data offer new opportunities to build efficient computational models predicting binding molecules for target sites through the application of data mining and machine learning. In particular, deep neural networks are powerful techniques capable of learning from complex data in order to make informed drug binding predictions. In this communication, we describe Pocket2Drug, a deep graph neural network model to predict binding molecules for a given a ligand binding site. This approach first learns the conditional probability distribution of small molecules from a large dataset of pocket structures with supervised training, followed by the sampling of drug candidates from the trained model. Comprehensive benchmarking simulations show that using Pocket2Drug significantly improves the chances of finding molecules binding to target pockets compared to traditional drug selection procedures. Specifically, known binders are generated for as many as 80.5% of targets present in the testing set consisting of dissimilar data from that used to train the deep graph neural network model. Overall, Pocket2Drug is a promising computational approach to inform the discovery of novel biopharmaceuticals.

8.
J Cheminform ; 13(1): 58, 2021 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-34380569

RESUMO

Traditional techniqueset identification, we developed GraphDTI, a robust machine learning framework integrating the molecular-level information on drugs, proteins, and binding sites with the system-level information on gene expression and protein-protein interactions. In order to properly evaluate the performance of GraphDTI, we compiled a high-quality benchmarking dataset and devised a new cluster-based cross-validation p to identify macromolecular targets for drugs utilize solely the information on a query drug and a putative target. Nonetheless, the mechanisms of action of many drugs depend not only on their binding affinity toward a single protein, but also on the signal transduction through cascades of molecular interactions leading to certain phenotypes. Although using protein-protein interaction networks and drug-perturbed gene expression profiles can facilitate system-level investigations of drug-target interactions, utilizing such large and heterogeneous data poses notable challenges. To improve the state-of-the-art in drug targrotocol. Encouragingly, GraphDTI not only yields an AUC of 0.996 against the validation dataset, but it also generalizes well to unseen data with an AUC of 0.939, significantly outperforming other predictors. Finally, selected examples of identified drug-target interactions are validated against the biomedical literature. Numerous applications of GraphDTI include the investigation of drug polypharmacological effects, side effects through off-target binding, and repositioning opportunities.

9.
Methods Mol Biol ; 2266: 299-312, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33759134

RESUMO

Bionoi is a new software to generate Voronoi representations of ligand-binding sites in proteins for machine learning applications. Unlike many other deep learning models in biomedicine, Bionoi utilizes off-the-shelf convolutional neural network architectures, reducing the development work without sacrificing the performance. When initially generating images of binding sites, users have the option to color the Voronoi cells based on either one of six structural, physicochemical, and evolutionary properties, or a blend of all six individual properties. Encouragingly, after inputting images generated by Bionoi into the convolutional autoencoder, the network was able to effectively learn the most salient features of binding pockets. The accuracy of the generated model is evaluated both visually and numerically through the reconstruction of binding site images from the latent feature space. The generated feature vectors capture well various properties of binding sites and thus can be applied in a multitude of machine learning projects. As a demonstration, we trained the ResNet-18 architecture from Microsoft on Bionoi images to show that it is capable to effectively classify nucleotide- and heme-binding pockets against a large dataset of control pockets binding a variety of small molecules. Bionoi is freely available to the research community at https://github.com/CSBG-LSU/BionoiNet.


Assuntos
Descoberta de Drogas/métodos , Aprendizado de Máquina , Redes Neurais de Computação , Proteínas/química , Software , Sítios de Ligação , Bases de Dados de Compostos Químicos , Aprendizado Profundo , Histidina Quinase/química , Ligantes
10.
Bioinformatics ; 36(10): 3077-3083, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32053156

RESUMO

MOTIVATION: Fast and accurate classification of ligand-binding sites in proteins with respect to the class of binding molecules is invaluable not only to the automatic functional annotation of large datasets of protein structures but also to projects in protein evolution, protein engineering and drug development. Deep learning techniques, which have already been successfully applied to address challenging problems across various fields, are inherently suitable to classify ligand-binding pockets. Our goal is to demonstrate that off-the-shelf deep learning models can be employed with minimum development effort to recognize nucleotide- and heme-binding sites with a comparable accuracy to highly specialized, voxel-based methods. RESULTS: We developed BionoiNet, a new deep learning-based framework implementing a popular ResNet model for image classification. BionoiNet first transforms the molecular structures of ligand-binding sites to 2D Voronoi diagrams, which are then used as the input to a pretrained convolutional neural network classifier. The ResNet model generalizes well to unseen data achieving the accuracy of 85.6% for nucleotide- and 91.3% for heme-binding pockets. BionoiNet also computes significance scores of pocket atoms, called BionoiScores, to provide meaningful insights into their interactions with ligand molecules. BionoiNet is a lightweight alternative to computationally expensive 3D architectures. AVAILABILITY AND IMPLEMENTATION: BionoiNet is implemented in Python with the source code freely available at: https://github.com/CSBG-LSU/BionoiNet. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Redes Neurais de Computação , Proteínas , Sítios de Ligação , Ligantes , Estrutura Molecular
11.
Heliyon ; 5(9): e02494, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31687586

RESUMO

Use of recycled concrete aggregates (RCA) as a pavement material is one of the most sustainable engineering applications for the pavement industry. Investigation on the performance characteristics of RCA, such as elastic and plastic deformations of RCA is therefore, needed to assess RCA's application as an unbound pavement material. In this study, repeated load tri-axial (RLT) tests were conducted to investigate the response of RCA to elastic and plastic deformations under dynamic loads. The elastic and plastic properties were analysed through the 'resilient modulus' and the accumulation of plastic strain, respectively, at different confining stresses and moisture contents of the RCA specimens. The results from the tests revealed a steady gain of stiffness of the RCA specimens with an increase of load cycles at low moisture contents, high confining pressures and high vertical axial pressure.

12.
Comput Biol Chem ; 64: 403-413, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27620381

RESUMO

Structural and computational biologists often need to measure the similarity of ligand binding conformations. The commonly used root-mean-square deviation (RMSD) is not only ligand-size dependent, but also may fail to capture biologically meaningful binding features. To address these issues, we developed the Contact Mode Score (CMS), a new metric to assess the conformational similarity based on intermolecular protein-ligand contacts. The CMS is less dependent on the ligand size and has the ability to include flexible receptors. In order to effectively compare binding poses of non-identical ligands bound to different proteins, we further developed the eXtended Contact Mode Score (XCMS). We believe that CMS and XCMS provide a meaningful assessment of the similarity of ligand binding conformations. CMS and XCMS are freely available at http://brylinski.cct.lsu.edu/content/contact-mode-score and http://geaux-computational-bio.github.io/contact-mode-score/.


Assuntos
Modelos Moleculares , Simulação de Acoplamento Molecular , Sítios de Ligação , Humanos , Ligantes , Tamanho da Partícula , Ligação Proteica , Estrutura Terciária de Proteína
13.
PLoS One ; 11(7): e0158898, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27420300

RESUMO

Computational modeling of drug binding to proteins is an integral component of direct drug design. Particularly, structure-based virtual screening is often used to perform large-scale modeling of putative associations between small organic molecules and their pharmacologically relevant protein targets. Because of a large number of drug candidates to be evaluated, an accurate and fast docking engine is a critical element of virtual screening. Consequently, highly optimized docking codes are of paramount importance for the effectiveness of virtual screening methods. In this communication, we describe the implementation, tuning and performance characteristics of GeauxDock, a recently developed molecular docking program. GeauxDock is built upon the Monte Carlo algorithm and features a novel scoring function combining physics-based energy terms with statistical and knowledge-based potentials. Developed specifically for heterogeneous computing platforms, the current version of GeauxDock can be deployed on modern, multi-core Central Processing Units (CPUs) as well as massively parallel accelerators, Intel Xeon Phi and NVIDIA Graphics Processing Unit (GPU). First, we carried out a thorough performance tuning of the high-level framework and the docking kernel to produce a fast serial code, which was then ported to shared-memory multi-core CPUs yielding a near-ideal scaling. Further, using Xeon Phi gives 1.9× performance improvement over a dual 10-core Xeon CPU, whereas the best GPU accelerator, GeForce GTX 980, achieves a speedup as high as 3.5×. On that account, GeauxDock can take advantage of modern heterogeneous architectures to considerably accelerate structure-based virtual screening applications. GeauxDock is open-sourced and publicly available at www.brylinski.org/geauxdock and https://figshare.com/articles/geauxdock_tar_gz/3205249.


Assuntos
Simulação de Acoplamento Molecular/métodos , Software , Algoritmos , Bases de Dados de Proteínas , Humanos , Método de Monte Carlo
14.
Artigo em Inglês | MEDLINE | ID: mdl-23410464

RESUMO

We find that imposing crossing symmetry in the iteration process considerably extends the range of convergence for solutions of the parquet equations for the Hubbard model. When crossing symmetry is not imposed, the convergence of both simple iteration and more complicated continuous loading (homotopy) methods is limited to high temperatures and weak interactions. We modify the algorithm to impose the crossing symmetry without increasing the computational complexity. We also imposed time reversal and a subset of the point group symmetries, but they did not further improve the convergence. We elaborate the details of the latency hiding scheme which can significantly improve the performance in the computational implementation. With these modifications, stable solutions for the parquet equations can be obtained by iteration more quickly even for values of the interaction that are a significant fraction of the bandwidth and for temperatures that are much smaller than the bandwidth. This may represent a crucial step towards the solution of two-particle field theories for correlated electron models.


Assuntos
Algoritmos , Condutividade Elétrica , Modelos Teóricos , Análise Numérica Assistida por Computador , Simulação por Computador
15.
J Phys Chem A ; 113(45): 12715-23, 2009 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-19888780

RESUMO

Complex tensor contraction expressions arise in accurate electronic structure models in quantum chemistry, such as the coupled cluster method. This paper addresses two complementary aspects of performance optimization of such tensor contraction expressions. Transformations using algebraic properties of commutativity and associativity can be used to significantly decrease the number of arithmetic operations required for evaluation of these expressions. The identification of common subexpressions among a set of tensor contraction expressions can result in a reduction of the total number of operations required to evaluate the tensor contractions. The first part of the paper describes an effective algorithm for operation minimization with common subexpression identification and demonstrates its effectiveness on tensor contraction expressions for coupled cluster equations. The second part of the paper highlights the importance of data layout transformation in the optimization of tensor contraction computations on modern processors. A number of considerations, such as minimization of cache misses and utilization of multimedia vector instructions, are discussed. A library for efficient index permutation of multidimensional tensors is described, and experimental performance data is provided that demonstrates its effectiveness.

16.
Artigo em Inglês | MEDLINE | ID: mdl-18263085

RESUMO

The general task of abduction is to infer a hypothesis that best explains a set of data. A typical subtask of this is to synthesize a composite hypothesis that best explains the entire data from elementary hypotheses which can explain portions of it. The synthesis subtask of abduction is computationally expensive, more so in the presence of certain types of interactions between the elementary hypotheses. In this paper, we first formulate the abduction task as a nonmonotonic constrained-optimization problem. We then consider a special version of the general abduction task that is linear and monotonic. Next, we describe a neural network based on the Hopfield model of computation for the special version of the abduction task. The connections in this network are symmetric, the energy function contains product forms, and the minimization of this function requires a network of order greater than two. We then discuss another neural architecture which is composed of functional modules that reflect the structure of the abduction task. The connections in this second-order network are asymmetric. We conclude with a discussion of how the second architecture may be extended to address the general abduction task.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...