Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Technol ; 57(34): 12701-12712, 2023 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-37590157

RESUMO

Recent restrictions on marine fuel sulfur content and a heightened regulatory focus on maritime decarbonization are driving the deployment of low-carbon and low-sulfur alternative fuels for maritime transport. In this study, we quantified the life-cycle greenhouse gas and sulfur oxide emissions of several novel marine biofuel candidates and benchmarked the results against the emissions reduction targets set by the International Maritime Organization. A total of 11 biofuel pathways via four conversion processes are considered, including (1) biocrudes derived from hydrothermal liquefaction of wastewater sludge and manure, (2) bio-oils from catalytic fast pyrolysis of woody biomass, (3) diesel via Fischer-Tropsch synthesis of landfill gas, and (4) lignin ethanol oil from reductive catalytic fractionation of poplar. Our analysis reveals that marine biofuels' life-cycle greenhouse gas emissions range from -60 to 56 gCO2e MJ-1, representing a 41-163% reduction compared with conventional low-sulfur fuel oil, thus demonstrating a considerable potential for decarbonizing the maritime sector. Due to the net-negative carbon emissions from their life cycles, all waste-based pathways showed over 100% greenhouse gas reduction potential with respect to low-sulfur fuel oil. However, while most biofuel feedstocks have a naturally occurring low-sulfur content, the waste feedstocks considered here have higher sulfur content, requiring hydrotreating prior to use as a marine fuel. Combining the break-even price estimates from a published techno-economic analysis, which was performed concurrently with this study, the marginal greenhouse gas abatement cost was estimated to range from -$120 to $370 tCO2e-1 across the pathways considered. Lower marginal greenhouse gas abatement costs were associated with waste-based pathways, while higher marginal greenhouse gas abatement costs were associated with the other biomass-based pathways. Except for lignin ethanol oil, all candidates show the potential to be competitive with a carbon credit of $200 tCO2e-1 in 2016 dollars, which is within the range of prices recently received in connection with California's low-carbon fuel standard.


Assuntos
Óleos Combustíveis , Gases de Efeito Estufa , Animais , Biocombustíveis , Lignina , Pirólise , Madeira , Enxofre , Carbono , Etanol , Estágios do Ciclo de Vida
2.
Environ Sci Technol ; 56(23): 17206-17214, 2022 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-36409825

RESUMO

Renewable, low-carbon biofuels offer the potential opportunity to decarbonize marine transportation. This paper presents a comparative techno-economic analysis and process sustainability assessment of four conversion pathways: (1) hydrothermal liquefaction (HTL) of wet wastes such as sewage sludge and manure; (2) fast pyrolysis of woody biomass; (3) landfill gas Fischer-Tropsch synthesis; and (4) lignin-ethanol oil from the lignocellulosic ethanol biorefinery utilizing reductive catalytic fractionation. These alternative marine biofuels have a modeled minimum fuel selling price between $1.68 and $3.98 per heavy fuel oil gallon equivalent in 2016 U.S. dollars based on a mature plant assessment. The selected pathways also exhibit good process sustainability performance in terms of water intensity compared to the petroleum refineries. Further, the O and S contents of the biofuels vary widely. While the non-HTL biofuels exhibit negligible S content, the raw biocrudes via HTL pathways from sludge and manure show relatively high S contents (>0.5 wt %). Partial or full hydrotreatment can effectively lower the biocrude S content. Additionally, co-feeding with other low-sulfur wet wastes such as food waste can provide another option to produce raw biocrude with lower S content to meet the target with further hydrotreatment. This study indicates that biofuels could be a cost-effective fuel option for the marine sector. Marine biofuels derived from various feedstocks and conversion technologies could mitigate marine biofuel adoption risk in terms of feedstock availability and biorefinery economics.


Assuntos
Biocombustíveis , Eliminação de Resíduos , Esgotos , Esterco , Alimentos , Biomassa , Etanol
3.
ACS Omega ; 5(43): 27735-27740, 2020 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-33163755

RESUMO

Both lignin and waste plastic are refractory polymers whose oxidation can produce feedstocks for the manufacture of chemicals and fuels. This brief review explores how renewably generated electricity could provide energy needed to selectively activate the endothermic depolymerization reactions, which might assist the production of hydrogen. We identify mediated electrochemistry as a particularly suitable approach to contending with these refractory, sparingly soluble materials.

4.
Angew Chem Int Ed Engl ; 59(34): 14550-14557, 2020 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-32415724

RESUMO

Ethanol can be used as a platform molecule for synthesizing valuable chemicals and fuel precursors. Direct synthesis of C5+ ketones, building blocks for lubricants and hydrocarbon fuels, from ethanol was achieved over a stable Pd-promoted ZnO-ZrO2 catalyst. The sequence of reaction steps involved in the C5+ ketone formation from ethanol was determined. The key reaction steps were found to be the in situ generation of the acetone intermediate and the cross-aldol condensation between the reaction intermediates acetaldehyde and acetone. The formation of a Pd-Zn alloy in situ was identified to be the critical factor in maintaining high yield to the C5+ ketones and the stability of the catalyst. A yield of >70 % to C5+ ketones was achieved over a 0.1 % Pd-ZnO-ZrO2 mixed oxide catalyst, and the catalyst was demonstrated to be stable beyond 2000 hours on stream without any catalyst deactivation.

5.
Sci Rep ; 6: 37586, 2016 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-27876869

RESUMO

The formation of carbonaceous deposits (coke) in zeolite pores during catalysis leads to temporary deactivation of catalyst, necessitating regeneration steps, affecting throughput, and resulting in partial permanent loss of catalytic efficiency. Yet, even to date, the coke molecule distribution is quite challenging to study with high spatial resolution from surface to bulk of the catalyst particles at a single particle level. To address this challenge we investigated the coke molecules in HZSM-5 catalyst after ethanol conversion treatment by a combination of C K-edge X-ray absorption spectroscopy (XAS), 13C Cross polarization-magic angle spinning nuclear magnetic resonance (CP-MAS NMR) spectroscopy, and atom probe tomography (APT). XAS and NMR highlighted the aromatic character of coke molecules. APT permitted the imaging of the spatial distribution of hydrocarbon molecules located within the pores of spent HZSM-5 catalyst from surface to bulk at a single particle level. 27Al NMR results and APT results indicated association of coke molecules with Al enriched regions within the spent HZSM-5 catalyst particles. The experimental results were additionally validated by a level-set-based APT field evaporation model. These results provide a new approach to investigate catalytic deactivation due to hydrocarbon coking or poisoning of zeolites at an unprecedented spatial resolution.

6.
Chemistry ; 22(31): 10884-91, 2016 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-27373451

RESUMO

Lignin is the largest source of renewable material with an aromatic skeleton. However, due to the recalcitrant and heterogeneous nature of the lignin polymer, it has been a challenge to effectively depolymerize lignin and produce high-value chemicals with high selectivity. In this study, a highly efficient lignin-to-monomeric phenolic compounds (MPC) conversion method based on peracetic acid (PAA) treatment was reported. PAA treatment of two biorefinery lignin samples, diluted acid pretreated corn stover lignin (DACSL) and steam exploded spruce lignin (SESPL), led to complete solubilization and production of selective hydroxylated monomeric phenolic compounds (MPC-H) and monomeric phenolic acid compounds (MPC-A) including 4-hydroxy-2-methoxyphenol, p-hydroxybenzoic acid, vanillic acid, syringic acid, and 3,4-dihydroxybenzoic acid. The maximized MPC yields obtained were 18 and 22 % based on the initial weight of the lignin in SESPL and DACSL, respectively. However, we found that the addition of niobium pentoxide catalyst to PAA treatment of lignin can significantly improve the MPC yields up to 47 %. The key reaction steps and main mechanisms involved in this new lignin-to-MPC valorization pathway were investigated and elucidated.


Assuntos
Hidroxibenzoatos/química , Lignina/química , Ácido Peracético/química , Biomassa , Catálise , Polimerização
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...