Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 135
Filtrar
1.
J Biol Chem ; 299(11): 105342, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37832872

RESUMO

The diaphanous-related formin, Diaphanous 1 (DIAPH1), is required for the assembly of Filamentous (F)-actin structures. DIAPH1 is an intracellular effector of the receptor for advanced glycation end products (RAGE) and contributes to RAGE signaling and effects such as increased cell migration upon RAGE stimulation. Mutations in DIAPH1, including those in the basic "RRKR" motif of its autoregulatory domain, diaphanous autoinhibitory domain (DAD), are implicated in hearing loss, macrothrombocytopenia, and cardiovascular diseases. The solution structure of the complex between the N-terminal inhibitory domain, DID, and the C-terminal DAD, resolved by NMR spectroscopy shows only transient interactions between DID and the basic motif of DAD, resembling those found in encounter complexes. Cross-linking studies placed the RRKR motif into the negatively charged cavity of DID. Neutralizing the cavity resulted in a 5-fold decrease in the binding affinity and 4-fold decrease in the association rate constant of DAD for DID, indicating that the RRKR interactions with DID form a productive encounter complex. A DIAPH1 mutant containing a neutralized RRKR binding cavity shows excessive colocalization with actin and is unresponsive to RAGE stimulation. This is the first demonstration of a specific alteration of the surfaces responsible for productive encounter complexation with implications for human pathology.


Assuntos
Citoesqueleto de Actina , Actinas , Forminas , Humanos , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Citoesqueleto/metabolismo , Forminas/metabolismo , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Transdução de Sinais
2.
Nat Commun ; 14(1): 6900, 2023 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-37903764

RESUMO

Inter-organelle contact and communication between mitochondria and sarco/endoplasmic reticulum (SR/ER) maintain cellular homeostasis and are profoundly disturbed during tissue ischemia. We tested the hypothesis that the formin Diaphanous-1 (DIAPH1), which regulates actin dynamics, signal transduction and metabolic functions, contributes to these processes. We demonstrate that DIAPH1 interacts directly with Mitofusin-2 (MFN2) to shorten mitochondria-SR/ER distance, thereby enhancing mitochondria-ER contact in cells including cardiomyocytes, endothelial cells and macrophages. Solution structure studies affirm the interaction between the Diaphanous Inhibitory Domain and the cytosolic GTPase domain of MFN2. In male rodent and human cardiomyocytes, DIAPH1-MFN2 interaction regulates mitochondrial turnover, mitophagy, and oxidative stress. Introduction of synthetic linker construct, which shorten the mitochondria-SR/ER distance, mitigated the molecular and functional benefits of DIAPH1 silencing in ischemia. This work establishes fundamental roles for DIAPH1-MFN2 interaction in the regulation of mitochondria-SR/ER contact networks. We propose that targeting pathways that regulate DIAPH1-MFN2 interactions may facilitate recovery from tissue ischemia.


Assuntos
Células Endoteliais , Mitocôndrias , Humanos , Masculino , Retículo Endoplasmático/metabolismo , Células Endoteliais/metabolismo , Forminas/metabolismo , GTP Fosfo-Hidrolases/genética , GTP Fosfo-Hidrolases/metabolismo , Isquemia/genética , Isquemia/metabolismo , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Transdução de Sinais , Animais
3.
Obesity (Silver Spring) ; 31(7): 1825-1843, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37231626

RESUMO

OBJECTIVE: Optimal body mass and composition as well as metabolic fitness require tightly regulated and interconnected mechanisms across tissues. Disturbances in these regulatory networks tip the balance between metabolic health versus overweight and obesity and their complications. The authors previously demonstrated roles for the receptor for advanced glycation end products (RAGE) in obesity, as global- or adipocyte-specific deletion of Ager (the gene encoding RAGE) protected mice from high-fat diet-induced obesity and metabolic dysfunction. METHODS: To explore translational strategies evoked by these observations, a small molecule antagonist of RAGE signaling, RAGE229, was administered to lean mice and mice with obesity undergoing diet-induced weight loss. Body mass and composition and whole body and adipose tissue metabolism were examined. RESULTS: This study demonstrates that antagonism of RAGE signaling reduced body mass and adiposity and improved glucose, insulin, and lipid metabolism in lean male and female mice and in male mice with obesity undergoing weight loss. In adipose tissue and in human and mouse adipocytes, RAGE229 enhanced phosphorylation of protein kinase A substrates, which augmented lipolysis, mitochondrial function, and thermogenic programs. CONCLUSIONS: Pharmacological antagonism of RAGE signaling is a potent strategy to optimize healthful body mass and composition and metabolic fitness.


Assuntos
Tecido Adiposo , Obesidade , Masculino , Camundongos , Feminino , Humanos , Animais , Receptor para Produtos Finais de Glicação Avançada/genética , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Tecido Adiposo/metabolismo , Obesidade/metabolismo , Dieta Hiperlipídica , Termogênese/genética , Redução de Peso
4.
Am J Physiol Cell Physiol ; 324(5): C1017-C1027, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36878847

RESUMO

Sirtuins are NAD+-dependent deacetylases with beneficial roles in conditions relevant to human health, including metabolic disease, type II diabetes, obesity, cancer, aging, neurodegenerative diseases, and cardiac ischemia. Since ATP-sensitive K+ (KATP) channels have cardioprotective roles, we investigated whether they are regulated by sirtuins. Nicotinamide mononucleotide (NMN) was used to increase cytosolic NAD+ levels and to activate sirtuins in cell lines, isolated rat and mouse cardiomyocytes or insulin-secreting INS-1 cells. KATP channels were studied with patch clamping, biochemistry techniques, and antibody uptake experiments. NMN led to an increase in intracellular NAD+ levels and an increase in the KATP channel current, without significant changes in the unitary current amplitude or open probability. An increased surface expression was confirmed using surface biotinylation approaches. The rate of KATP channel internalization was diminished by NMN, which may be a partial explanation for the increased surface expression. We show that NMN acts via sirtuins since the increased KATP channel surface expression was prevented by blockers of SIRT1 and SIRT2 (Ex527 and AGK2) and mimicked by SIRT1 activation (SRT1720). The pathophysiological relevance of this finding was studied using a cardioprotection assay with isolated ventricular myocytes, in which NMN protected against simulated ischemia or hypoxia in a KATP channel-dependent manner. Overall, our data draw a link between intracellular NAD+, sirtuin activation, KATP channel surface expression, and cardiac protection against ischemic damage.


Assuntos
Diabetes Mellitus Tipo 2 , Sirtuínas , Ratos , Camundongos , Humanos , Animais , Sirtuína 1/genética , Sirtuína 1/metabolismo , Sirtuínas/genética , Sirtuínas/metabolismo , NAD/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Miócitos Cardíacos/metabolismo , Trifosfato de Adenosina/metabolismo , Canais KATP/genética , Canais KATP/metabolismo
5.
Cardiovasc Diabetol ; 22(1): 73, 2023 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-36978133

RESUMO

BACKGROUND: Cardiovascular diseases, including diabetic cardiomyopathy, are major causes of death in people with type 2 diabetes. Aldose reductase activity is enhanced in hyperglycemic conditions, leading to altered cardiac energy metabolism and deterioration of cardiac function with adverse remodeling. Because disturbances in cardiac energy metabolism can promote cardiac inefficiency, we hypothesized that aldose reductase inhibition may mitigate diabetic cardiomyopathy via normalization of cardiac energy metabolism. METHODS: Male C57BL/6J mice (8-week-old) were subjected to experimental type 2 diabetes/diabetic cardiomyopathy (high-fat diet [60% kcal from lard] for 10 weeks with a single intraperitoneal injection of streptozotocin (75 mg/kg) at 4 weeks), following which animals were randomized to treatment with either vehicle or AT-001, a next-generation aldose reductase inhibitor (40 mg/kg/day) for 3 weeks. At study completion, hearts were perfused in the isolated working mode to assess energy metabolism. RESULTS: Aldose reductase inhibition by AT-001 treatment improved diastolic function and cardiac efficiency in mice subjected to experimental type 2 diabetes. This attenuation of diabetic cardiomyopathy was associated with decreased myocardial fatty acid oxidation rates (1.15 ± 0.19 vs 0.5 ± 0.1 µmol min-1 g dry wt-1 in the presence of insulin) but no change in glucose oxidation rates compared to the control group. In addition, cardiac fibrosis and hypertrophy were also mitigated via AT-001 treatment in mice with diabetic cardiomyopathy. CONCLUSIONS: Inhibiting aldose reductase activity ameliorates diastolic dysfunction in mice with experimental type 2 diabetes, which may be due to the decline in myocardial fatty acid oxidation, indicating that treatment with AT-001 may be a novel approach to alleviate diabetic cardiomyopathy in patients with diabetes.


Assuntos
Diabetes Mellitus Tipo 2 , Cardiomiopatias Diabéticas , Animais , Masculino , Camundongos , Aldeído Redutase/metabolismo , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Cardiomiopatias Diabéticas/tratamento farmacológico , Cardiomiopatias Diabéticas/etiologia , Cardiomiopatias Diabéticas/prevenção & controle , Ácidos Graxos/metabolismo , Camundongos Endogâmicos C57BL , Miocárdio/metabolismo , Modelos Animais de Doenças , Distribuição Aleatória
6.
Commun Biol ; 6(1): 280, 2023 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-36932214

RESUMO

Atherosclerosis evolves through dysregulated lipid metabolism interwoven with exaggerated inflammation. Previous work implicating the receptor for advanced glycation end products (RAGE) in atherosclerosis prompted us to explore if Diaphanous 1 (DIAPH1), which binds to the RAGE cytoplasmic domain and is important for RAGE signaling, contributes to these processes. We intercrossed atherosclerosis-prone Ldlr-/- mice with mice devoid of Diaph1 and fed them Western diet for 16 weeks. Compared to male Ldlr-/- mice, male Ldlr-/- Diaph1-/- mice displayed significantly less atherosclerosis, in parallel with lower plasma concentrations of cholesterol and triglycerides. Female Ldlr-/- Diaph1-/- mice displayed significantly less atherosclerosis compared to Ldlr-/- mice and demonstrated lower plasma concentrations of cholesterol, but not plasma triglycerides. Deletion of Diaph1 attenuated expression of genes regulating hepatic lipid metabolism, Acaca, Acacb, Gpat2, Lpin1, Lpin2 and Fasn, without effect on mRNA expression of upstream transcription factors Srebf1, Srebf2 or Mxlipl in male mice. We traced DIAPH1-dependent mechanisms to nuclear translocation of SREBP1 in a manner independent of carbohydrate- or insulin-regulated cues but, at least in part, through the actin cytoskeleton. This work unveils new regulators of atherosclerosis and lipid metabolism through DIAPH1.


Assuntos
Aterosclerose , Metabolismo dos Lipídeos , Animais , Feminino , Masculino , Camundongos , Aterosclerose/genética , Aterosclerose/metabolismo , Colesterol/metabolismo , Metabolismo dos Lipídeos/genética , Fígado/metabolismo , Fosfatidato Fosfatase/metabolismo , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Triglicerídeos/metabolismo , Forminas/genética , Camundongos Knockout
7.
Sci Rep ; 12(1): 22293, 2022 12 24.
Artigo em Inglês | MEDLINE | ID: mdl-36566335

RESUMO

Analytical tools to study cell physiology are critical for optimizing drug-host interactions. Real time pulse chase NMR spectroscopy, RTPC-NMR, was introduced to monitor the kinetics of metabolite production in HEK 293T cells treated with COVID-19 vaccine-like lipid nanoparticles, LNPs, with and without mRNA. Kinetic flux parameters were resolved for the incorporation of isotopic label into metabolites and clearance of labeled metabolites from the cells. Changes in the characteristic times for alanine production implicated mitochondrial dysfunction as a consequence of treating the cells with lipid nanoparticles, LNPs. Mitochondrial dysfunction was largely abated by inclusion of mRNA in the LNPs, the presence of which increased the size and uniformity of the LNPs. The methodology is applicable to all cultured cells.


Assuntos
COVID-19 , Nanopartículas , Humanos , Células HEK293 , Lipídeos/química , RNA Mensageiro/genética , Vacinas contra COVID-19 , Lipossomos , Espectroscopia de Ressonância Magnética , Nanopartículas/química , Mitocôndrias/genética , RNA Interferente Pequeno/genética
8.
Cardiovasc Res ; 2022 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-36448548

RESUMO

Overweight and obesity are leading causes of cardiometabolic dysfunction. Despite extensive investigation, the mechanisms mediating the increase in these conditions are yet to be fully understood. Beyond endogenous formation of advanced glycation end products (AGEs) in overweight and obesity, exogenous sources of AGEs accrue through the heating, production and consumption of highly-processed foods. Evidence from cellular and mouse model systems indicates that the interaction of AGEs with their central cell surface receptor for AGE (RAGE) in adipocytes suppresses energy expenditure and that AGE/RAGE contributes to increased adipose inflammation and processes linked to insulin resistance. In human subjects, the circulating soluble forms of RAGE, which are mutable, may serve as biomarkers of obesity and weight loss. Antagonists of RAGE signaling, through blockade of the interaction of the RAGE cytoplasmic domain with the formin, Diaphanous-1 (DIAPH1), target aberrant RAGE activities in metabolic tissues. This review focuses on the potential roles for AGEs and other RAGE ligands and RAGE/DIAPH1 in the pathogenesis of overweight and obesity and their metabolic consequences.

9.
J Lipid Res ; 63(11): 100274, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36115595

RESUMO

Lipid accumulation in nonadipose tissues can cause lipotoxicity, leading to cell death and severe organ dysfunction. Adipose triglyceride lipase (ATGL) deficiency causes human neutral lipid storage disease and leads to cardiomyopathy; ATGL deficiency has no current treatment. One possible approach to alleviate this disorder has been to alter the diet and reduce the supply of dietary lipids and, hence, myocardial lipid uptake. However, in this study, when we supplied cardiac Atgl KO mice a low- or high-fat diet, we found that heart lipid accumulation, heart dysfunction, and death were not altered. We next deleted lipid uptake pathways in the ATGL-deficient mice through the generation of double KO mice also deficient in either cardiac lipoprotein lipase or cluster of differentiation 36, which is involved in an lipoprotein lipase-independent pathway for FA uptake in the heart. We show that neither deletion ameliorated ATGL-deficient heart dysfunction. Similarly, we determined that non-lipid-containing media did not prevent lipid accumulation by cultured myocytes; rather, the cells switched to increased de novo FA synthesis. Thus, we conclude that pathological storage of lipids in ATGL deficiency cannot be corrected by reducing heart lipid uptake.


Assuntos
Aciltransferases , Cardiomiopatias , Lipase Lipoproteica , Animais , Humanos , Camundongos , Tecido Adiposo/metabolismo , Cardiomiopatias/metabolismo , Lipase/metabolismo , Lipase Lipoproteica/genética , Lipase Lipoproteica/metabolismo , Camundongos Knockout , Miocárdio/metabolismo , Triglicerídeos/metabolismo , Aciltransferases/deficiência , Aciltransferases/genética
10.
Obesity (Silver Spring) ; 30(8): 1647-1658, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35894077

RESUMO

OBJECTIVE: Aldose reductase (AKR1B1 in humans; Akr1b3 in mice), a key enzyme of the polyol pathway, mediates lipid accumulation in the murine heart and liver. The study objective was to explore potential roles for AKR1B1/Akr1b3 in the pathogenesis of obesity and its complications. METHODS: The study employed mice treated with an inhibitor of aldose reductase or mice devoid of Akr1b3 were used to determine their response to a high-fat diet. The study used subcutaneous adipose tissue-derived adipocytes to investigate mechanisms by which AKR1B1/Akr1b3 promotes diet-induced obesity. RESULTS: Increased expression of aldose reductase and senescence in the adipose tissue of humans and mice with obesity were demonstrated. Genetic deletion of Akr1b3 or pharmacological blockade of AKRIB3 with zopolrestat reduced high-fat-diet-induced obesity, attenuated markers of adipose tissue senescence, and increased lipolysis. CONCLUSIONS: AKR1B1/Akr1b3 modulation of senescence in subcutaneous adipose tissue contributes to aberrant metabolic responses to high-fat feeding. These data unveil new opportunities to target these pathways to combat obesity.


Assuntos
Aldeído Redutase , Gordura Subcutânea , Adipócitos/metabolismo , Tecido Adiposo/metabolismo , Aldeído Redutase/genética , Aldeído Redutase/metabolismo , Aldo-Ceto Redutases , Animais , Dieta Hiperlipídica/efeitos adversos , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/metabolismo , Gordura Subcutânea/metabolismo
11.
Front Cardiovasc Med ; 9: 937071, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35811725

RESUMO

Obesity and non-alcoholic fatty liver disease (NAFLD) are on the rise world-wide; despite fervent advocacy for healthier diets and enhanced physical activity, these disorders persist unabated and, long-term, are major causes of morbidity and mortality. Numerous fundamental biochemical and molecular pathways participate in these events at incipient, mid- and advanced stages during atherogenesis and impaired regression of established atherosclerosis. It is proposed that upon the consumption of high fat/high sugar diets, the production of receptor for advanced glycation end products (RAGE) ligands, advanced glycation end products (AGEs) and advanced lipoxidation end products (ALEs), contribute to the development of foam cells, endothelial injury, vascular inflammation, and, ultimately, atherosclerosis and its consequences. RAGE/Diaphanous-1 (DIAPH1) increases macrophage foam cell formation; decreases cholesterol efflux and causes foam cells to produce and release damage associated molecular patterns (DAMPs) molecules, which are also ligands of RAGE. DAMPs stimulate upregulation of Interferon Regulatory Factor 7 (IRF7) in macrophages, which exacerbates vascular inflammation and further perturbs cholesterol metabolism. Obesity and NAFLD, characterized by the upregulation of AGEs, ALEs and DAMPs in the target tissues, contribute to insulin resistance, hyperglycemia and type two diabetes. Once in motion, a vicious cycle of RAGE ligand production and exacerbation of RAGE/DIAPH1 signaling ensues, which, if left unchecked, augments cardiometabolic disease and its consequences. This Review focuses on RAGE/DIAPH1 and its role in perturbation of metabolism and processes that converge to augur cardiovascular disease.

12.
Int J Mol Sci ; 23(9)2022 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-35562970

RESUMO

Increasing evidence links the RAGE (receptor for advanced glycation end products)/DIAPH1 (Diaphanous 1) signaling axis to the pathogenesis of diabetic complications. RAGE is a multi-ligand receptor and through these ligand-receptor interactions, extensive maladaptive effects are exerted on cell types and tissues targeted for dysfunction in hyperglycemia observed in both type 1 and type 2 diabetes. Recent evidence indicates that RAGE ligands, acting as damage-associated molecular patterns molecules, or DAMPs, through RAGE may impact interferon signaling pathways, specifically through upregulation of IRF7 (interferon regulatory factor 7), thereby heralding and evoking pro-inflammatory effects on vulnerable tissues. Although successful targeting of RAGE in the clinical milieu has, to date, not been met with success, recent approaches to target RAGE intracellular signaling may hold promise to fill this critical gap. This review focuses on recent examples of highlights and updates to the pathobiology of RAGE and DIAPH1 in diabetic complications.


Assuntos
Complicações do Diabetes , Forminas , Receptor para Produtos Finais de Glicação Avançada , Proteínas de Transporte/metabolismo , Complicações do Diabetes/metabolismo , Diabetes Mellitus Tipo 2/complicações , Forminas/metabolismo , Produtos Finais de Glicação Avançada/metabolismo , Humanos , Ligantes , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Transdução de Sinais
13.
Sci Transl Med ; 13(621): eabf7084, 2021 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-34818060

RESUMO

The macro- and microvascular complications of type 1 and 2 diabetes lead to increased disease severity and mortality. The receptor for advanced glycation end products (RAGE) can bind AGEs and multiple proinflammatory ligands that accumulate in diabetic tissues. Preclinical studies indicate that RAGE antagonists have beneficial effects on numerous complications of diabetes. However, these antagonists target the extracellular domains of RAGE, which bind distinct RAGE ligands at diverse sites in the immunoglobulin-like variable domain and two constant domains. The cytoplasmic tail of RAGE (ctRAGE) binds to the formin, Diaphanous-1 (DIAPH1), and this interaction is important for RAGE signaling. To comprehensively capture the breadth of RAGE signaling, we developed small-molecule antagonists of ctRAGE-DIAPH1 interaction, termed RAGE229. We demonstrated that RAGE229 is effective in suppressing RAGE-DIAPH1 binding, Förster resonance energy transfer, and biological activities in cellular assays. Using solution nuclear magnetic resonance spectroscopy, we defined the molecular underpinnings of the interaction of RAGE229 with RAGE. Through in vivo experimentation, we showed that RAGE229 assuaged short- and long-term complications of diabetes in both male and female mice, without lowering blood glucose concentrations. Last, the treatment with RAGE229 reduced plasma concentrations of TNF-α, IL-6, and CCL2/JE-MCP1 in diabetic mice, in parallel with reduced pathological and functional indices of diabetes-like kidney disease. Targeting ctRAGE-DIAPH1 interaction with RAGE229 mitigated diabetic complications in rodents by attenuating inflammatory signaling.


Assuntos
Complicações do Diabetes , Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 1 , Diabetes Mellitus Tipo 2 , Forminas/antagonistas & inibidores , Animais , Complicações do Diabetes/metabolismo , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Tipo 1/complicações , Diabetes Mellitus Tipo 1/tratamento farmacológico , Feminino , Masculino , Camundongos , Receptor para Produtos Finais de Glicação Avançada/metabolismo
14.
Diabetes Metab Syndr ; 15(6): 102328, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34752935

RESUMO

BACKGROUND AND AIMS: Cardiometabolic disease may confer increased risk of adverse outcomes in COVID-19 patients by activation of the aldose reductase pathway. We hypothesized that aldose reductase inhibition with AT-001 might reduce viral inflammation and risk of adverse outcomes in diabetic patients with COVID-19. METHODS: We conducted an open-label prospective phase 2 clinical trial to assess safety, tolerability and efficacy of AT-001 in patients hospitalized with COVID-19 infection, history of diabetes mellitus and chronic heart disease. Eligible participants were prospectively enrolled and treated with AT-001 1500 mg BID for up to 14 days. Safety, tolerability, survival and length of hospital stay (LOS) were collected from the electronic medical record and compared with data from two matched control groups (MC1 and MC2) selected from a deidentified registry of COVID-19 patients at the same institution. RESULTS: AT-001 was safe and well tolerated in the 10 participants who received the study drug. In-hospital mortality observed in the AT-001 group was 20% vs. 31% in MC1 and 27% in MC2. Mean LOS observed in the AT-001 group was 5 days vs. 10 days in MC1 and 25 days in MC2. CONCLUSIONS: In hospitalized patients with COVID-19 and co-morbid diabetes mellitus and heart disease, treatment with AT-001 was safe and well tolerated. Exposure to AT-001 was associated with a trend of reduced mortality and shortened LOS. While the observed trend did not reach statistical significance, the present study provides the rationale for investigating potential benefit of AT-001 in COVID 19 affected patients in future studies.


Assuntos
Aldeído Redutase/antagonistas & inibidores , Benzotiazóis/uso terapêutico , Tratamento Farmacológico da COVID-19 , Pirazinas/uso terapêutico , Piridonas/uso terapêutico , Sistema de Registros , Idoso , Benzotiazóis/farmacologia , COVID-19/complicações , COVID-19/mortalidade , Complicações do Diabetes/tratamento farmacológico , Feminino , Humanos , Hipertensão/complicações , Pacientes Internados , Masculino , Pessoa de Meia-Idade , New York/epidemiologia , Projetos Piloto , Estudos Prospectivos , Pirazinas/farmacologia , Piridonas/farmacologia
15.
J Exp Med ; 218(9)2021 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-34283206

RESUMO

In obesity complicated by hypertension, multicellular processes integrate to orchestrate cardiac fibrosis; the underlying mechanisms, however, remain elusive. In this issue of JEM, Cheng et al. (2021. J. Exp. Med. https://doi.org/10.1084/jem.20210252) describe adipocyte-macrophage collaboration to foster cardiac fibrosis through the actions of angiotensin II in obesity.


Assuntos
Macrófagos , Remodelação Ventricular , Adipócitos , Comunicação , Humanos
16.
Immunometabolism ; 3(3)2021.
Artigo em Inglês | MEDLINE | ID: mdl-34178389

RESUMO

Fundamental modulation of energy metabolism in immune cells is increasingly being recognized for the ability to impart important changes in cellular properties. In homeostasis, cells of the innate immune system, such as monocytes, macrophages and dendritic cells (DCs), are enabled to respond rapidly to various forms of acute cellular and environmental stress, such as pathogens. In chronic stress milieus, these cells may undergo a re-programming, thereby triggering processes that may instigate tissue damage and failure of resolution. In settings of metabolic dysfunction, moieties such as excess sugars (glucose, fructose and sucrose) accumulate in the tissues and may form advanced glycation end products (AGEs), which are signaling ligands for the receptor for advanced glycation end products (RAGE). In addition, cellular accumulation of cholesterol species such as that occurring upon macrophage engulfment of dead/dying cells, presents these cells with a major challenge to metabolize/efflux excess cholesterol. RAGE contributes to reduced expression and activities of molecules mediating cholesterol efflux. This Review chronicles examples of the roles that sugars and cholesterol, via RAGE, play in immune cells in instigation of maladaptive cellular signaling and the mediation of chronic cellular stress. At this time, emerging roles for the ligand-RAGE axis in metabolism-mediated modulation of inflammatory signaling in immune cells are being unearthed and add to the growing body of factors underlying pathological immunometabolism.

17.
Curr Cardiol Rep ; 23(7): 74, 2021 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-34081211

RESUMO

PURPOSE OF REVIEW: The cardiovascular complications of type 1 and 2 diabetes are major causes of morbidity and mortality. Extensive efforts have been made to maximize glycemic control; this strategy reduces certain manifestations of cardiovascular complications. There are drawbacks, however, as intensive glycemic control does not impart perennial protective benefits, and these efforts are not without potential adverse sequelae, such as hypoglycemic events. RECENT FINDINGS: Here, the authors have focused on updates into key areas under study for mechanisms driving these cardiovascular disorders in diabetes, including roles for epigenetics and gene expression, interferon networks, and mitochondrial dysfunction. Updates on the cardioprotective roles of the new classes of hyperglycemia-targeting therapies, the sodium glucose transport protein 2 inhibitors and the agonists of the glucagon-like peptide 1 receptor system, are reviewed. In summary, insights from ongoing research and the cardioprotective benefits of the newer type 2 diabetes therapies are providing novel areas for therapeutic opportunities in diabetes and CVD.


Assuntos
Doenças Cardiovasculares , Diabetes Mellitus Tipo 1 , Diabetes Mellitus Tipo 2 , Epidemias , Inibidores do Transportador 2 de Sódio-Glicose , Doenças Cardiovasculares/epidemiologia , Doenças Cardiovasculares/etiologia , Doenças Cardiovasculares/prevenção & controle , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/epidemiologia , Humanos , Hipoglicemiantes/uso terapêutico
18.
Front Endocrinol (Lausanne) ; 12: 636267, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33776930

RESUMO

Diabetes is a leading cause of cardiovascular morbidity and mortality. Despite numerous treatments for cardiovascular disease (CVD), for patients with diabetes, these therapies provide less benefit for protection from CVD. These considerations spur the concept that diabetes-specific, disease-modifying therapies are essential to identify especially as the diabetes epidemic continues to expand. In this context, high levels of blood glucose stimulate the flux via aldose reductase (AR) pathway leading to metabolic and signaling changes in cells of the cardiovascular system. In animal models flux via AR in hearts is increased by diabetes and ischemia and its inhibition protects diabetic and non-diabetic hearts from ischemia-reperfusion injury. In mouse models of diabetic atherosclerosis, human AR expression accelerates progression and impairs regression of atherosclerotic plaques. Genetic studies have revealed that single nucleotide polymorphisms (SNPs) of the ALD2 (human AR gene) is associated with diabetic complications, including cardiorenal complications. This Review presents current knowledge regarding the roles for AR in the causes and consequences of diabetic cardiovascular disease and the status of AR inhibitors in clinical trials. Studies from both human subjects and animal models are presented to highlight the breadth of evidence linking AR to the cardiovascular consequences of diabetes.


Assuntos
Aldeído Redutase/antagonistas & inibidores , Doenças Cardiovasculares/complicações , Doenças Cardiovasculares/terapia , Complicações do Diabetes , Diabetes Mellitus/terapia , Inibidores Enzimáticos/uso terapêutico , Animais , Glicemia/análise , Plaquetas/metabolismo , Sistema Cardiovascular/metabolismo , Progressão da Doença , Glucose/metabolismo , Humanos , Hiperglicemia/metabolismo , Camundongos , Osmose , Polímeros/química , Polimorfismo Genético , Ratos , Traumatismo por Reperfusão/complicações
19.
FEBS J ; 288(11): 3424-3427, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33565264

RESUMO

Heme is an iron-containing complex involved in fundamental cellular functions including oxygen transport. Free heme accumulation in blood, during intravascular hemolysis and other pathological conditions, triggers vascular dysfunction, pro-inflammatory, and prothrombotic cascade. Studies by May et al present a novel finding that heme is a ligand for RAGE and that heme binds to the V domain of RAGE and induces RAGE oligomerization. Furthermore, they show that the in vivo consequences of heme-RAGE interaction lead to a pro-inflammatory and procoagulant phenotype in the lungs. This discovery of heme as a ligand for RAGE sets the stage for probing the role of RAGE in heme homeostasis and the pathogenic role of heme-RAGE interaction in hemolytic diseases.


Assuntos
Heme , Ligantes , Receptor para Produtos Finais de Glicação Avançada/genética
20.
Arterioscler Thromb Vasc Biol ; 41(2): 614-627, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33327744

RESUMO

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has affected millions of people worldwide and the pandemic has yet to wane. Despite its associated significant morbidity and mortality, there are no definitive cures and no fully preventative measures to combat SARS-CoV-2. Hence, the urgency to identify the pathobiological mechanisms underlying increased risk for and the severity of SARS-CoV-2 infection is mounting. One contributing factor, the accumulation of damage-associated molecular pattern molecules, is a leading trigger for the activation of nuclear factor-kB and the IRF (interferon regulatory factors), such as IRF7. Activation of these pathways, particularly in the lung and other organs, such as the heart, contributes to a burst of cytokine release, which predisposes to significant tissue damage, loss of function, and mortality. The receptor for advanced glycation end products (RAGE) binds damage-associated molecular patterns is expressed in the lung and heart, and in priming organs, such as the blood vessels (in diabetes) and adipose tissue (in obesity), and transduces the pathological signals emitted by damage-associated molecular patterns. It is proposed that damage-associated molecular pattern-RAGE enrichment in these priming tissues, and in the lungs and heart during active infection, contributes to the widespread tissue damage induced by SARS-CoV-2. Accordingly, the RAGE axis might play seminal roles in and be a target for therapeutic intervention in SARS-CoV-2 infection.


Assuntos
COVID-19/metabolismo , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Adipócitos/metabolismo , Enzima de Conversão de Angiotensina 2/metabolismo , Animais , COVID-19/complicações , COVID-19/epidemiologia , Síndrome da Liberação de Citocina , Complicações do Diabetes/metabolismo , Diabetes Mellitus/metabolismo , Modelos Animais de Doenças , Endotélio Vascular/metabolismo , Humanos , Fator Regulador 7 de Interferon/metabolismo , Pulmão/metabolismo , Miocárdio/metabolismo , NF-kappa B/metabolismo , Obesidade/complicações , Obesidade/metabolismo , Pandemias , SARS-CoV-2
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...