Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
1.
J Cachexia Sarcopenia Muscle ; 15(3): 868-882, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38689513

RESUMO

BACKGROUND: Sarcopenia is characterized by loss of skeletal muscle mass and function, and is a major risk factor for disability and independence in the elderly. Effective medication is not available. Dietary restriction (DR) has been found to attenuate aging and aging-related diseases, including sarcopenia, but the mechanism of both DR and sarcopenia are incompletely understood. METHODS: In this study, mice body weight, fore and all limb grip strength, and motor learning and coordination performance were first analysed to evaluate the DR effects on muscle functioning. Liquid chromatography-mass spectrometry (LC-MS) was utilized for the metabolomics study of the DR effects on sarcopenia in progeroid DNA repair-deficient Ercc1∆/- and Xpg-/- mice, to identify potential biomarkers for attenuation of sarcopenia. RESULTS: Muscle mass was significantly (P < 0.05) decreased (13-20%) by DR; however, the muscle quality was improved with retained fore limbs and all limbs grip strength in Ercc1∆/- and Xpg-/- mice. The LC-MS results revealed that metabolites and pathways related to oxidative-stress, that is, GSSG/GSH (P < 0.01); inflammation, that is, 9-HODE, 11-HETE (P < 0.05), PGE2, PGD2, and TXB2 (P < 0.01); and muscle growth (PGF2α) (P < 0.01) and regeneration stimulation (PGE2) (P < 0.05) are significantly downregulated by DR. On the other hand, anti-inflammatory indicator and several related metabolites, that is, ß-hydroxybutyrate (P < 0.01), 14,15-DiHETE (P < 0.0001), 8,9-EET, 12,13-DiHODE, and PGF1 (P < 0.05); consumption of sources of energy (i.e., muscle and liver glycogen); and energy production pathways, that is, glycolysis (glucose, glucose-6-P, fructose-6-P) (P < 0.01), tricarboxylic acid cycle (succinyl-CoA, malate) (P < 0.001), and gluconeogenesis-related metabolite, alanine (P < 0.01), are significantly upregulated by DR. The notably (P < 0.01) down-modulated muscle growth (PGF2α) and regeneration (PGE2) stimulation metabolite and the increased consumption of glycogen in muscle and liver may be related to the significantly (P < 0.01) lower body weight and muscle mass by DR. The downregulated oxidative stress, pro-inflammatory mediators, and upregulated anti-inflammatory metabolites resulted in a lower energy expenditure, which contributed to enhanced muscle quality together with upregulated energy production pathways by DR. The improved muscle quality may explain why grip strength is maintained and motor coordination and learning performance are improved by DR in Ercc1∆/- and Xpg-/- mice. CONCLUSIONS: This study provides fundamental supporting information on biomarkers and pathways related to the attenuation of sarcopenia, which might facilitate its diagnosis, prevention, and clinical therapy.


Assuntos
Metabolômica , Sarcopenia , Animais , Camundongos , Sarcopenia/metabolismo , Metabolômica/métodos , Senilidade Prematura/metabolismo , Metaboloma , Camundongos Knockout , Modelos Animais de Doenças , Reparo do DNA , Masculino , Restrição Calórica/métodos , Músculo Esquelético/metabolismo , Proteínas de Ligação a DNA , Endonucleases
2.
Electrophoresis ; 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38456383

RESUMO

When hospitalized, infants, particularly preterm, are often subjected to multiple painful needle procedures to collect sufficient blood for metabolic screening or diagnostic purposes using standard clinical tests. For example, at least 100 µL of whole blood is required to perform one creatinine plasma measurement with enzymatic colorimetric assays. As capillary electrophoresis-mass spectrometry (CE-MS) utilizing a sheathless porous tip interface only requires limited amounts of sample for in-depth metabolic profiling studies, the aim of this work was to assess the utility of this method for the determination of creatinine in low amounts of plasma using residual blood samples from adults and infants. By using a starting amount of 5 µL of plasma and an injection volume of only 6.7 nL, a detection limit (S/N = 3) of 30 nM could be obtained for creatinine, and intra- and interday precisions (for peak area ratios) were below 3.2%. To shorten the electrophoretic separation time, a multi-segment injection (MSI) strategy was employed to analyze up to seven samples in one electrophoretic run. The findings obtained by CE-MS for creatinine in pretreated plasma were compared with the values acquired by an enzymatic colorimetric assay typically used in clinical laboratories for this purpose. The comparison revealed that CE-MS could be used in a reliable way for the determination of creatinine in residual plasma samples from infants and adults. Nevertheless, to underscore the clinical efficacy of this method, a subsequent investigation employing an expanded pool of plasma samples is imperative. This will not only enhance the method's diagnostic utility but also contribute to minimizing both the amount and frequency of blood collection required for diagnostic purposes.

3.
Electrophoresis ; 45(5-6): 380-391, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38072651

RESUMO

In contemporary biomedical research, the zebrafish (Danio rerio) is increasingly considered a model system, as zebrafish embryos and larvae can (potentially) fill the gap between cultured cells and mammalian animal models, because they can be obtained in large numbers, are small and can easily be manipulated genetically. Given that capillary electrophoresis-mass spectrometry (CE-MS) is a useful analytical separation technique for the analysis of polar ionogenic metabolites in biomass-limited samples, the aim of this study was to develop and assess a CE-MS-based analytical workflow for the profiling of (endogenous) metabolites in extracts from individual zebrafish larvae and pools of small numbers of larvae. The developed CE-MS workflow was used to profile metabolites in extracts from pools of 1, 2, 4, 8, 12, 16, 20, and 40 zebrafish larvae. For six selected endogenous metabolites, a linear response (R2  > 0.98) for peak areas was obtained in extracts from these pools. The repeatability was satisfactory, with inter-day relative standard deviation values for peak area of 9.4%-17.7% for biological replicates (n = 3 over 3 days). Furthermore, the method allowed the analysis of over 70 endogenous metabolites in a pool of 12 zebrafish larvae, and 29 endogenous metabolites in an extract from only 1 zebrafish larva. Finally, we applied the optimized CE-MS workflow to identify potential novel targets of the mineralocorticoid receptor in mediating the effects of cortisol.


Assuntos
Hidrocortisona , Peixe-Zebra , Animais , Hidrocortisona/farmacologia , Larva , Fluxo de Trabalho , Espectrometria de Massas/métodos , Metabolômica/métodos , Eletroforese Capilar/métodos , Mamíferos
4.
Electrophoresis ; 44(24): 2000-2024, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37667867

RESUMO

Single-cell heterogeneity in metabolism, drug resistance and disease type poses the need for analytical techniques for single-cell analysis. As the metabolome provides the closest view of the status quo in the cell, studying the metabolome at single-cell resolution may unravel said heterogeneity. A challenge in single-cell metabolome analysis is that metabolites cannot be amplified, so one needs to deal with picolitre volumes and a wide range of analyte concentrations. Due to high sensitivity and resolution, MS is preferred in single-cell metabolomics. Large numbers of cells need to be analysed for proper statistics; this requires high-throughput analysis, and hence automation of the analytical workflow. Significant advances in (micro)sampling methods, CE and ion mobility spectrometry have been made, some of which have been applied in high-throughput analyses. Microfluidics has enabled an automation of cell picking and metabolite extraction; image recognition has enabled automated cell identification. Many techniques have been used for data analysis, varying from conventional techniques to novel combinations of advanced chemometric approaches. Steps have been set in making data more findable, accessible, interoperable and reusable, but significant opportunities for improvement remain. Herein, advances in single-cell analysis workflows and data analysis are discussed, and recommendations are made based on the experimental goal.


Assuntos
Metaboloma , Metabolômica , Metabolômica/métodos , Espectrometria de Massas/métodos , Manejo de Espécimes , Análise de Célula Única
5.
Methods Mol Biol ; 2571: 95-103, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36152153

RESUMO

Capillary electrophoresis-mass spectrometry (CE-MS) is gaining interest for metabolomics studies because of its high separation efficiency, selectivity, and versatility. The ability to inject nanoliters from only a few microliters of sample in the injection vial makes this approach very suited for volume-limited applications. However, the low injection volumes could compromise the detection sensitivity of CE-MS, thereby potentially limiting its scope in metabolomics. To overcome this issue, online sample preconcentration methods have been developed to increase sample-loading volumes without hampering the intrinsic high separation efficiency of CE. In this protocol, online preconcentration with sample stacking based on pH junction was assessed for the direct profiling of endogenous metabolites in rat brain microdialysates. Sample stacking was realized by a pre-injection of ammonium hydroxide, followed by a large sample injection (i.e., about 17% of the total capillary volume). It is shown that this relatively simple and fast preconcentration procedure is fully compatible with the high-salt concentration in microdialysates and significantly improves the detection sensitivity of the CE-MS method.


Assuntos
Eletroforese Capilar , Metabolômica , Hidróxido de Amônia , Animais , Eletroforese Capilar/métodos , Espectrometria de Massas/métodos , Metabolômica/métodos , Ratos
6.
Methods Mol Biol ; 2571: 105-114, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36152154

RESUMO

The simultaneous analysis of cationic and anionic metabolites using capillary electrophoresis-mass spectrometry (CE-MS) has been considered challenging, as often two different analytical methods are required. Although CE-MS methods for cationic metabolite profiling have already shown good performance metrics, the profiling of anionic metabolites often results in relatively low sensitivity and poor repeatability caused by problems related to unstable electrospray and corona discharge when using reversed CE polarity and detection by MS in negative ionization mode. In this protocol, we describe a chemical derivatization procedure that provides a permanent positive charge to acidic metabolites, thereby allowing us to profile anionic metabolites by CE-MS using exactly the same separation conditions as employed for the analysis of basic metabolites. The utility of the overall approach is demonstrated for the analysis of energy metabolism-related metabolites in low numbers of HepG2 cells.


Assuntos
Eletroforese Capilar , Espectrometria de Massas por Ionização por Electrospray , Animais , Ânions , Cátions , Eletroforese Capilar/métodos , Mamíferos , Espectrometria de Massas por Ionização por Electrospray/métodos
7.
Metabolites ; 12(8)2022 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-36005613

RESUMO

The metabolic profiling of a wide range of chemical classes relevant to understanding sarcopenia under conditions in which sample availability is limited, e.g., from mouse models, small muscles, or muscle biopsies, is desired. Several existing metabolomics platforms that include diverse classes of signaling lipids, energy metabolites, and amino acids and amines would be informative for suspected biochemical pathways involved in sarcopenia. The sample limitation requires an optimized sample preparation method with minimal losses during isolation and handling and maximal accuracy and reproducibility. Here, two developed sample preparation methods, BuOH-MTBE-Water (BMW) and BuOH-MTBE-More-Water (BMMW), were evaluated and compared with previously reported methods, Bligh-Dyer (BD) and BuOH-MTBE-Citrate (BMC), for their suitability for these classes. The most optimal extraction was found to be the BMMW method, with the highest extraction recovery of 63% for the signaling lipids and 81% for polar metabolites, and an acceptable matrix effect (close to 1.0) for all metabolites of interest. The BMMW method was applied on muscle tissues as small as 5 mg (dry weight) from the well-characterized, prematurely aging, DNA repair-deficient Ercc1∆/- mouse mutant exhibiting multiple-morbidities, including sarcopenia. We successfully detected 109 lipids and 62 polar targeted metabolites. We further investigated whether fast muscle tissue isolation is necessary for mouse sarcopenia studies. A muscle isolation procedure involving 15 min at room temperature revealed a subset of metabolites to be unstable; hence, fast sample isolation is critical, especially for more oxidative muscles. Therefore, BMMW and fast muscle tissue isolation are recommended for future sarcopenia studies. This research provides a sensitive sample preparation method for the simultaneous extraction of non-polar and polar metabolites from limited amounts of muscle tissue, supplies a stable mouse muscle tissue collection method, and methodologically supports future metabolomic mechanistic studies of sarcopenia.

8.
Methods Mol Biol ; 2531: 203-209, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35941487

RESUMO

Capillary electrophoresis-mass spectrometry (CE-MS) employing a sheathless porous tip interface has become a strong analytical tool for the efficient profiling of highly polar and charged metabolites in volume/material-restricted biological samples. As more and more metabolomics studies are (intrinsically) dealing with low numbers of mammalian cells, it would be important to use an additional performance metric to effectively evaluate the sampling and sample preparation procedure, in particular quenching. An established parameter to assess the sampling and sample preparation quality when working with cell cultures is the adenylate energy charge (AEC), which represents an index of the energy state of a cell. In this protocol, a CE-MS strategy is proposed for the reliable determination of the adenylate energy charge (AEC) in metabolomics studies dealing with low numbers of mammalian cells.


Assuntos
Eletroforese Capilar , Metabolômica , Animais , Eletroforese Capilar/métodos , Mamíferos , Espectrometria de Massas/métodos , Metabolômica/métodos , Espectrometria de Massas por Ionização por Electrospray/métodos
9.
ACS Meas Sci Au ; 2(3): 251-260, 2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35726252

RESUMO

The adsorption of metabolites to the surface of nanomaterials is a growing area of interest in the field of bionanointeractions. Like its more-established protein counterpart, it is thought that the metabolite corona has a key role in the uptake, distribution, and toxicity of nanomaterials in organisms. Previous research has demonstrated that nanomaterials obtain a unique metabolite fingerprint when exposed to biological matrices; however, there have been some concerns raised over the reproducibility of bionanointeraction research due to challenges in dispersion of nanomaterials and their stability. As such, this work investigates a much-overlooked aspect of this field, i.e., sample preparation, which is vital to the accurate, reproducible, and informative analysis of the metabolite corona. The impact of elution buffer pH, volume, and ionic strength on the metabolite corona composition acquired by uncapped and polyvinylpyrrolidone (PVP)-capped TiO2 from mixtures of cationic and anionic metabolites was studied. We demonstrate the temporal evolution of the TiO2 metabolite corona and the recovery of the metabolite corona, which resulted from a complex biological matrix, in this case human plasma. This work also demonstrates that it is vital to optimize sample preparation for each nanomaterial being investigated, as the metabolite recovery from Fe3O4 and Dispex-capped TiO2 nanomaterials is significantly reduced compared to the aforementioned uncapped and PVP-capped TiO2 nanomaterials. These are important findings for future bionanointeraction studies, which is a rapidly emerging area of research in nanoscience.

10.
Electrophoresis ; 43(18-19): 1814-1821, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35560354

RESUMO

The composition of wine is determined by a complex interaction between environmental factors, genetic factors (i.e., grape varieties), and winemaking practices (including technology and storage). Metabolomics using NMR spectroscopy, GC-MS, and/or LC-MS has shown to be a useful approach for assessing the origin, authenticity, and quality of various wines. Nonetheless, the use of additional analytical techniques with complementary separation mechanisms may aid in the deeper understanding of wine's metabolic processes. In this study, we demonstrate that CE-MS is a very suitable approach for the efficient profiling of polar ionogenic metabolites in wines. Without using any sample preparation or derivatization, wine was analyzed using a 10-min CE-MS workflow with interday RSD values for 31 polar and charged metabolites below 3.8% and 23% for migration times and peak areas, respectively. The utility of this workflow for the global profiling of polar ionogenic metabolites in wine was evaluated by analyzing different cool-climate Polish wine samples.


Assuntos
Vinho , Eletroforese Capilar/métodos , Espectrometria de Massas/métodos , Metabolômica/métodos , Polônia , Vinho/análise
11.
Anal Chim Acta ; 1210: 339888, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35595362

RESUMO

The endocannabinoid system (ECS) is implicated in various brain disorders. Changes in the composition of the cerebrospinal fluid (CSF) may be associated with ECS-related pathologies. Endocannabinoids (eCBs) and their analogues are present at low concentrations in human CSF, which hampered the investigation of the ECS in this body fluid. In this study, we developed a highly sensitive and selective micro-flow liquid chromatography-tandem mass spectrometry (micro-LC-MS/MS) method for the analysis of eCBs and eCB analogues in human CSF. The developed method allowed for the quantitative analysis of 16 eCBs and their analogues in human CSF. Micro-LC-MS/MS analyses were performed at a flow-rate of 4 µL min-1 with a 0.3-mm inner diameter column. A minor modification of a novel spray needle was carried out to improve the robustness of our method. By using an injection volume of 3 µL, our method reached limits of detection in the range from 0.6 to 1293.4 pM and limits of quantification in range from 2.0 to 4311.3 pM while intra- and interday precisions were below 13.7%. The developed workflow was successfully used for the determination of eCBs in 288 human CSF samples. It is anticipated that the proposed approach will contribute to a deeper understanding of the role of ECS in various brain disorders.


Assuntos
Encefalopatias , Endocanabinoides , Cromatografia Líquida de Alta Pressão , Cromatografia Líquida/métodos , Humanos , Reprodutibilidade dos Testes , Espectrometria de Massas em Tandem/métodos
13.
Anal Sci Adv ; 3(1-2): 3-13, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38716053

RESUMO

The simultaneous analysis of a broad range of polar ionogenic metabolites using capillary electrophoresis-mass spectrometry (CE-MS) can be challenging, as two different analytical methods are often required, that is, one for cations and one for anions. Even though CE-MS has shown to be an effective method for cationic metabolite profiling, the analysis of small anionic metabolites often results in relatively low sensitivity and poor repeatability. In this work, a novel derivatization strategy based on trimethylmethaneaminophenacetyl bromide was developed to enable CE-MS analysis of carboxylic acid metabolites using normal CE polarity (i.e., cathode in the outlet) and detection by mass spectrometry in positive ionization mode. Optimization of derivatization conditions was performed using a response surface methodology after which the optimized method (incubation time 50 min, temperature 90°C, and pH 10) was used for the analysis of carboxylic acid metabolites in extracts from HepG2 cells. For selected metabolites, detection limits were down to 8.2 nM, and intraday relative standard deviation values for replicates (n = 3) for peak areas were below 21.5%. Metabolites related to glycolysis, tricarboxylic acid cycle, and anaerobic respiration pathways were quantified in 250,000 cell lysates, and could still be detected in extracts from only 25,000 HepG2 cell lysates (∼70 cell lysates injected).

14.
Adv Exp Med Biol ; 1336: 159-178, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34628632

RESUMO

Capillary electrophoresis-mass spectrometry (CE-MS) is a very useful analytical technique for the selective and highly efficient profiling of polar and charged metabolites in a wide range of biological samples. Compared to other analytical techniques, the use of CE-MS in metabolomics is relatively low as the approach is still regarded as technically challenging and not reproducible. In this chapter, the possibilities of CE-MS for metabolomics are highlighted with special emphasis on the use of recently developed interfacing designs. The utility of CE-MS for targeted and untargeted metabolomics studies is demonstrated by discussing representative and recent examples in the biomedical and clinical fields. The potential of CE-MS for large-scale and quantitative metabolomics studies is also addressed. Finally, some general conclusions and perspectives are given on this strong analytical separation technique for probing the polar metabolome.


Assuntos
Eletroforese Capilar , Metabolômica , Espectrometria de Massas , Metaboloma , Software
15.
Electrophoresis ; 42(4): 381-401, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32906195

RESUMO

Capillary electrophoresis-mass spectrometry (CE-MS) is now a mature analytical technique in metabolomics, notably for the efficient profiling of polar and charged metabolites. Over the past few years, (further) progress has been made in the design of improved interfacing techniques for coupling CE to MS; also, in the development of CE-MS approaches for profiling metabolites in volume-restricted samples, and in strategies that further enhance the metabolic coverage. In this article, which is a follow-up of a previous review article covering the years 2016-2018 (Electrophoresis 2019, 40, 165-179), the main (technological) developments in CE-MS methods and strategies for metabolomics are discussed covering the literature from July 2018 to June 2020. Representative examples highlight the utility of CE-MS in the fields of biomedical, clinical, microbial, plant and food metabolomics. A complete overview of recent CE-MS-based metabolomics studies is given in a table, which provides information on sample type and pretreatment, capillary coatings, and MS detection mode. Finally, some general conclusions and perspectives are given.


Assuntos
Eletroforese Capilar , Espectrometria de Massas , Metabolômica , Animais , Biomarcadores/análise , Biomarcadores/metabolismo , Humanos , Camundongos , Plantas/metabolismo , Leveduras/metabolismo
16.
J Vis Exp ; (164)2020 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-33191929

RESUMO

The adsorption of biomolecules from surrounding biological matrices to the surface of nanomaterials (NMs) to form the corona has been of interest for the past decade. Interest in the bio-nano interface arises from the fact that the biomolecular corona confers a biological identity to NMs and thus causes the body to identify them as "self". For example, previous studies have demonstrated that the proteins in the corona are capable of interacting with membrane receptors to influence cellular uptake and established that the corona is responsible for cellular trafficking of NMs and their eventual toxicity. To date, most research has focused upon the protein corona and overlooked the possible impacts of the metabolites included in the corona or synergistic effects between components in the complete biomolecular corona. As such, this work demonstrates methodologies to characterize both the protein and metabolite components of the biomolecular corona using bottom-up proteomics and metabolomics approaches in parallel. This includes an on-particle digest of the protein corona with a surfactant used to increase protein recovery, and a passive characterization of the metabolite corona by analyzing metabolite matrices before and after NM exposures. This work introduces capillary electrophoresis - mass spectrometry (CESI-MS) as a new technique for NM corona characterization. The protocols outlined here demonstrate how CESI-MS can be used for the reliable characterization of both the protein and metabolite corona acquired by NMs. The move to CESI-MS greatly decreases the volume of sample required (compared to traditional liquid chromatography - mass spectrometry (LC-MS) approaches) with multiple injections possible from as little as 5 µL of sample, making it ideal for volume limited samples. Furthermore, the environmental consequences of analysis are reduced with respect to LC-MS due to the low flow rates (<20 nL/min) in CESI-MS, and the use of aqueous electrolytes which eliminates the need for organic solvents.


Assuntos
Eletroforese Capilar/métodos , Metaboloma , Nanoestruturas/química , Coroa de Proteína/química , Espectrometria de Massas em Tandem/métodos , Adsorção , Cromatografia Líquida , Eletrólitos/química , Humanos , Isomerismo , Peptídeos/química , Reprodutibilidade dos Testes
17.
Anal Chem ; 92(20): 14103-14112, 2020 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-32961048

RESUMO

Capillary zone electrophoresis-mass spectrometry (CE-MS) is a mature analytical tool for the efficient profiling of (highly) polar and ionizable compounds. However, the use of CE-MS in comparison to other separation techniques remains underrepresented in metabolomics, as this analytical approach is still perceived as technically challenging and less reproducible, notably for migration time. The latter is key for a reliable comparison of metabolic profiles and for unknown biomarker identification that is complementary to high resolution MS/MS. In this work, we present the results of a Metabo-ring trial involving 16 CE-MS platforms among 13 different laboratories spanning two continents. The goal was to assess the reproducibility and identification capability of CE-MS by employing effective electrophoretic mobility (µeff) as the key parameter in comparison to the relative migration time (RMT) approach. For this purpose, a representative cationic metabolite mixture in water, pretreated human plasma, and urine samples spiked with the same metabolite mixture were used and distributed for analysis by all laboratories. The µeff was determined for all metabolites spiked into each sample. The background electrolyte (BGE) was prepared and employed by each participating lab following the same protocol. All other parameters (capillary, interface, injection volume, voltage ramp, temperature, capillary conditioning, and rinsing procedure, etc.) were left to the discretion of the contributing laboratories. The results revealed that the reproducibility of the µeff for 20 out of the 21 model compounds was below 3.1% vs 10.9% for RMT, regardless of the huge heterogeneity in experimental conditions and platforms across the 13 laboratories. Overall, this Metabo-ring trial demonstrated that CE-MS is a viable and reproducible approach for metabolomics.


Assuntos
Eletroforese Capilar/métodos , Compostos Orgânicos/sangue , Compostos Orgânicos/urina , Espectrometria de Massas em Tandem/métodos , Cátions/química , Bases de Dados de Compostos Químicos , Eletrólitos/química , Humanos , Metaboloma , Metabolômica , Reprodutibilidade dos Testes
18.
Talanta ; 217: 121107, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32498853

RESUMO

Currently, a high variety of analytical techniques to perform metabolomics is available. One of these techniques is capillary electrophoresis coupled to mass spectrometry (CE-MS), which has emerged as a rather strong analytical technique for profiling polar and charged compounds. This work aims to discover with CE-MS potential metabolic consequences of evoked seizures in plasma by using a 6Hz acute corneal seizure mouse model. CE-MS is an appealing technique because of its capability to handle very small sample volumes, such as the 10 µL plasma samples obtained using capillary microsampling in this study. After liquid-liquid extraction, the samples were analyzed with CE-MS using low-pH separation conditions, followed by data analysis and biomarker identification. Both electrically induced seizures showed decreased values of methionine, lysine, glycine, phenylalanine, citrulline, 3-methyladenine and histidine in mice plasma. However, a second provoked seizure, 13 days later, showed a less pronounced decrease of the mean concentrations of these plasma metabolites, demonstrated by higher fold change ratios. Other obtained markers that can be related to seizure activities based on literature data, are isoleucine, serine, proline, tryptophan, alanine, arginine, valine and asparagine. Most amino acids showed relatively stable plasma concentrations between the basal levels (Time point 1) and after the 13-day wash-out period (Time point 3), which suggests its effectiveness. Overall, this work clearly demonstrated the possibility of profiling metabolite consequences related to seizure activities of an intrinsically low amount of body fluid using CE-MS. It would be useful to investigate and validate, in the future, the known and unknown metabolites in different animal models as well as in humans.


Assuntos
Modelos Animais de Doenças , Convulsões/metabolismo , Doença Aguda , Animais , Eletroforese Capilar , Análise dos Mínimos Quadrados , Masculino , Espectrometria de Massas , Camundongos , Análise Multivariada , Convulsões/sangue
19.
Small ; 16(21): e2000295, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32240572

RESUMO

Nanomaterials (NMs) are promptly coated with biomolecules in biological systems leading to the formation of the so-called corona. To date, research has predominantly focused on the protein corona and how it affects NM uptake, distribution, and bioactivity by conferring a biological identity to NMs enabling interactions with receptors to mediate cellular responses. Thus, protein corona studies are now integral to nanosafety assessment. However, a larger class of molecules, the metabolites, which are orders of magnitude smaller than proteins (<1000 Da) and regulate metabolic pathways, has been largely overlooked. This hampers the understanding of the bio-nano interface, development of computational predictions of corona formation, and investigations into uptake or toxicity at the cellular level, including identification of molecular initiating events triggering adverse outcome pathways. Here, a capillary electrophoresis-mass spectrometry based metabolomics approach reveals that pure polar ionogenic metabolite standards differentially adsorb to a range of 6 NMs (SiO2 , 3 TiO2 with different surface chemistries, and naïve and carboxylated polystyrene NMs). The metabolite corona composition is quantitatively compared using protein-free and complete plasma samples, revealing that proteins in samples significantly change the composition of the metabolite corona. This key finding provides the basis to include the metabolite corona in future nanosafety endeavors.


Assuntos
Metabolômica , Nanopartículas , Coroa de Proteína , Eletroforese Capilar , Espectrometria de Massas , Nanopartículas/química , Nanopartículas/metabolismo , Projetos Piloto , Coroa de Proteína/química , Dióxido de Silício/química , Titânio/química
20.
Electrophoresis ; 41(5-6): 360-369, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31907937

RESUMO

Negative ion mode nano-ESI-MS is often considered for the analysis of acidic compounds, including nucleotides. However, under high aqueous separation conditions, corona discharge is frequently observed at emitter tips, which may result in low ion abundances and reduced nano-ESI needle emitter lifetimes. In this work, we introduce a sheathless CE-MS method for the highly efficient and sensitive analysis of nucleotides employing ESI in positive ion mode, thereby fully circumventing corona discharge. By using a background electrolyte of 16 mM ammonium acetate (pH 9.7) a mixture of 12 nucleotides, composed of mono-, di-, and tri-phosphates, could be efficiently analyzed with plate numbers per meter above 220 000 and with LODs in the range from 0.06 to 1.3 nM, corresponding to 0.4 to 8.6 attomole, when using an injection volume of about 6.5 nL only. The utility of the method was demonstrated for the profiling of nucleotides in low numbers of mammalian cells using HepG2 cells as a model system. Endogenous nucleotides could be efficiently analyzed in extracts from 50 000 down to 500 HepG2 cells only. Moreover, apart from nucleotides, also some nicotinamide-adenine dinucleotides and amino acids could be analyzed under these conditions, thereby clearly illustrating the utility of this approach for metabolic profiling of low amounts of biological material.


Assuntos
Eletroforese Capilar/métodos , Nucleotídeos/análise , Espectrometria de Massas por Ionização por Electrospray/métodos , Células Hep G2 , Humanos , Limite de Detecção , Modelos Lineares , Metaboloma , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...