Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Acta Crystallogr D Struct Biol ; 79(Pt 7): 624-631, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37314405

RESUMO

Controlled protein assembly and crystallization is necessary as a means of generating diffraction-quality crystals as well as providing a basis for new types of biomaterials. Water-soluble calixarenes are useful mediators of protein crystallization. Recently, it was demonstrated that Ralstonia solanacearum lectin (RSL) co-crystallizes with anionic sulfonato-calix[8]arene (sclx8) in three space groups. Two of these co-crystals only grow at pH ≤ 4 where the protein is cationic, and the crystal packing is dominated by the calixarene. This paper describes a fourth RSL-sclx8 co-crystal, which was discovered while working with a cation-enriched mutant. Crystal form IV grows at high ionic strength in the pH range 5-6. While possessing some features in common with the previous forms, the new structure reveals alternative calixarene binding modes. The occurrence of C2-symmetric assemblies, with the calixarene at special positions, appears to be an important result for framework fabrication. Questions arise regarding crystal screening and exhaustive searching for polymorphs.


Assuntos
Calixarenos , Ralstonia solanacearum , Lectinas , Calixarenos/química
2.
J Struct Biol ; 215(2): 107969, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37137399

RESUMO

The donut-shaped cucurbit[n]urils (Qn) are a class of rigid macrocyclic receptor with protein recognition capabilities. Qn encapsulation of amino acid side chains can enable protein assembly. Recently, cucurbit[7]uril (Q7) has been applied as a molecular glue for organizing protein building blocks into crystalline architectures. Q7 co-crystallization with dimethylated Ralstonia solanacearum lectin (RSL*) has yielded novel crystalline architectures. Co-crystallization of RSL* and Q7 yields either cage- or sheet-like architectures which may be modulated via protein engineering. However, questions remain as to the factors dictating the formation of one architecture over another (cage versus sheet). Here, we make use of an engineered RSL*-Q7 system which co-crystallizes as the cage or sheet assembly with easily-distinguished crystal morphologies. Using this model system, we probe how the crystallization conditions dictate which crystalline architecture is adopted. Protein-ligand ratios and the sodium concentration were identified as key determinants for the growth of the cage versus sheet assemblies.


Assuntos
Aminoácidos , Lectinas
3.
Chem Commun (Camb) ; 59(6): 776-779, 2023 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-36546612

RESUMO

Protein frameworks are an emerging class of biomaterial with medical and technological applications. Frameworks are studied mainly by X-ray diffraction or scattering techniques. Complementary strategies are required. Here, we report solid-state NMR analyses of a microcrystalline protein-macrocycle framework and the rehydrated freeze-dried protein. This methodology may aid the characterization of low-crystallinity frameworks.


Assuntos
Imageamento por Ressonância Magnética , Proteínas , Espectroscopia de Ressonância Magnética/métodos , Difração de Raios X , Congelamento
4.
Cryst Growth Des ; 22(5): 3271-3276, 2022 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-35529063

RESUMO

Controlled protein assembly provides a means to generate biomaterials. Synthetic macrocycles such as the water-soluble sulfonato-calix[n]arenes are useful mediators of protein assembly. Sulfonato-thiacalix[4]arene (tsclx 4 ), with its metal-binding capacity, affords the potential for simultaneous macrocycle- and metal-mediated protein assembly. Here, we describe the tsclx 4 -/Zn-directed assembly of two proteins: cationic α-helical cytochrome c (cyt c) and neutral ß-propeller Ralstonia solanacearum lectin (RSL). Two co-crystal forms were obtained with cyt c, each involving multinuclear zinc sites supported by the cone conformation of tsclx 4 . The tsclx 4 /Zn cluster acted as an assembly node via both lysine encapsulation and metal-mediated protein-protein contacts. In the case of RSL, tsclx 4 adopted the 1,2-alternate conformation and supported a dinuclear zinc site with concomitant encapsulation and metal-binding of two histidine side chains. These results, together with the knowledge of thiacalixarene/metal nanoclusters, suggest promising applications for thiacalixarenes in biomaterials and MOF fabrication.

5.
Chemistry ; 27(59): 14619-14627, 2021 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-34432924

RESUMO

One approach to protein assembly involves water-soluble supramolecular receptors that act like glues. Bionanoarchitectures directed by these scaffolds are often system-specific, with few studies investigating their customization. Herein, the modulation of cucurbituril-mediated protein assemblies through the inclusion of peptide tectons is described. Three peptides of varying length and structural order were N-terminally appended to RSL, a ß-propeller building block. Each fusion protein was incorporated into crystalline architectures mediated by cucurbit[7]uril (Q7). A trimeric coiled-coil served as a spacer within a Q7-directed sheet assembly of RSL, giving rise to a layered material of varying porosity. Within the spacer layers, the coiled-coils were dynamic. This result prompted consideration of intrinsically disordered peptides (IDPs) as modulatory tectons. Similar to the coiled-coil, a mussel adhesion peptide (Mefp) also acted as a spacer between protein-Q7 sheets. In contrast, the fusion of a nucleoporin peptide (Nup) to RSL did not recapitulate the sheet assembly. Instead, a Q7-directed cage was adopted, within which disordered Nup peptides were partially "captured" by Q7 receptors. IDP capture occurred by macrocycle recognition of an intrapeptide Phe-Gly motif in which the benzyl group was encapsulated by Q7. The modularity of these protein-cucurbituril architectures adds a new dimension to macrocycle-mediated protein assembly. Segregated protein crystals, with alternating layers of high and low porosity, could provide a basis for new types of materials.


Assuntos
Peptídeos , Proteínas , Hidrocarbonetos Aromáticos com Pontes , Imidazóis
6.
Cryst Growth Des ; 21(3): 1424-1427, 2021 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-34054353

RESUMO

Water-soluble, anionic calix[n]arenes are useful receptors for protein recognition and assembly. For example, sulfonato-calix[8]arene (sclx 8 ) can encapsulate proteins and direct their assembly into porous frameworks. In this work, we turned our attention to an "extended arm" calixarene with 16 phenyl rings. We hypothesized that this larger receptor would have increased capacity for protein masking/encapsulation. A cocrystal structure of p-benzyl-sulfonato-calix[8]arene (b-sclx 8 ) and cytochrome c (cyt c) revealed a surprising assembly. A pseudorotaxane comprising a stack of three b-sclx 8 molecules threaded by polyethylene glycol (PEG) was bound to the protein. The trimeric b-sclx 8 stack, a tubelike structure with a highly charged surface, mediated assembly via a new mode of protein recognition. The calixarene stack presents four hydrophobic grooves, each of which binds to one cyt c by accommodating the N-terminal α-helix. This unprecedented binding mode suggests new possibilities for supramolecular protein chemistry.

7.
J Am Chem Soc ; 143(4): 1896-1907, 2021 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-33470808

RESUMO

Precisely defined protein aggregates, as exemplified by crystals, have applications in functional materials. Consequently, engineered protein assembly is a rapidly growing field. Anionic calix[n]arenes are useful scaffolds that can mold to cationic proteins and induce oligomerization and assembly. Here, we describe protein-calixarene composites obtained via cocrystallization of commercially available sulfonato-calix[8]arene (sclx8) with the symmetric and "neutral" protein RSL. Cocrystallization occurred across a wide range of conditions and protein charge states, from pH 2.2-9.5, resulting in three crystal forms. Cationization of the protein surface at pH ∼ 4 drives calixarene complexation and yielded two types of porous frameworks with pore diameters >3 nm. Both types of framework provide evidence of protein encapsulation by the calixarene. Calixarene-masked proteins act as nodes within the frameworks, displaying octahedral-type coordination in one case. The other framework formed millimeter-scale crystals within hours, without the need for precipitants or specialized equipment. NMR experiments revealed macrocycle-modulated side chain pKa values and suggested a mechanism for pH-triggered assembly. The same low pH framework was generated at high pH with a permanently cationic arginine-enriched RSL variant. Finally, in addition to protein framework fabrication, sclx8 enables de novo structure determination.

8.
Org Biomol Chem ; 19(4): 837-844, 2021 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-33406171

RESUMO

The donut-shaped cucurbit[n]urils (Qn, n = 6-8) are rigid macrocyclic receptors with widespread use in protein recognition. To date, most applications have centred on the encapsulation of N-terminal aromatic residues by Q7 or Q8. Less attention has been placed on Q6, which can recognize lysine side chains due to its high affinity for alkylamines. In this work, we investigated protein-Q6 complexation by using NMR spectroscopy. Attempts to crystallize protein-Q6 complexes were thwarted by the crystallization of Q6. We studied four proteins that vary in size, net charge, and lysine content. In addition to Q6 interactions with specific Lys or dimethylated Lys residues, we report striking evidence for N-terminal recognition. High affinity (micromolar) binding occurred with the N-terminal Met-Lys motif present in one of the four model proteins. Engineering this feature into another model protein yielded a similar high affinity site. We also present evidence for Q8 binding at this N-terminal feature. These data expand the cucurbituril toolkit for protein sensing.


Assuntos
Hidrocarbonetos Aromáticos com Pontes/química , Imidazóis/química , Proteínas/química , Aminas/química , Motivos de Aminoácidos , Cristalografia por Raios X , Modelos Moleculares , Ligação Proteica
9.
Chem Commun (Camb) ; 56(3): 360-363, 2020 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-31825399

RESUMO

A crystalline biohybrid with a 4 : 1 protein : cucurbituril mass ratio is presented. This result was achieved by engineering additional cucurbit[7]uril (Q7) binding sites into a ß-propeller protein. In contrast to the parent protein, Q7-controlled assembly of the engineered variant occurred in solution, as evidenced by NMR and SAXS measurements.


Assuntos
Proteínas de Bactérias/química , Hidrocarbonetos Aromáticos com Pontes/química , Imidazóis/química , Sequência de Aminoácidos , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Hidrocarbonetos Aromáticos com Pontes/metabolismo , Imidazóis/metabolismo , Lectinas/química , Lectinas/genética , Lectinas/metabolismo , Ressonância Magnética Nuclear Biomolecular , Ralstonia solanacearum/metabolismo , Espalhamento a Baixo Ângulo , Difração de Raios X
10.
Bioconjug Chem ; 30(4): 1162-1168, 2019 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-30869874

RESUMO

PEGylation is the most widely used half-life extension strategy for protein therapeutics. While it imparts a range of attractive attributes PEGylation can impede protein binding and reduce efficacy. A model system to probe the effects of PEGylation on protein binding has practical applications. Here, we present a system based on complex formation between a hexavalent lectin (RSL) and the globular polysaccharide Ficoll PM70 (a type of glycocluster). Mutants of the lectin were used to generate conjugates with 3, 6, or 12 PEG (1 kDa) chains. Using NMR spectroscopy we monitored how the degree of PEGylation impacted the lectin-Ficoll interaction. The binding propensity was observed to decrease with increasing polymer density. Apparently, the extended PEG chains sterically impede the lectin-Ficoll binding. This deduction was supported by molecular dynamics simulations of the protein-polymer conjugates. The implications for protein-surface interactions are discussed.


Assuntos
Lectinas/química , Polietilenoglicóis/química , Polissacarídeos/química , Proteínas de Bactérias/química , Simulação de Dinâmica Molecular , Ligação Proteica , Ralstonia solanacearum/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA