Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Materials (Basel) ; 17(13)2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38998310

RESUMO

To meet the current demand for lead-free piezoelectric ceramics, a novel sol-gel synthesis route is presented for the preparation of Ba0.85Ca0.15Ti0.9Zr0.1O3 doped with cerium (Ce = 0, 0.01, and 0.02 mol%) and vanadium (V = 0, 0.3, and 0.4 mol%). X-ray diffraction patterns reveal the formation of a perovskite phase (space group P4mm) for all samples after calcination at 800 °C and sintering at 1250, 1350, and 1450 °C, where it is proposed that both dopants occupy the B site. Sintering studies show that V doping allows the sintering temperature to be reduced to at least 1250 °C. Undoped BCZT samples sintered at the same temperature show reduced functional properties compared to V-doped samples, i.e., d33 values increase by an order of magnitude with doping. The dissipation factor tan δ decreases with increasing sintering temperature for all doping concentrations, while the Curie temperature TC increases for all V-doped samples, reaching 120 °C for high-concentration co-doped samples. All results indicate that vanadium doping can facilitate the processing of BCZT at lower sintering temperatures without compromising performance while promoting thermal property stability.

2.
J Mater Sci Mater Electron ; 33(10): 7738-7749, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-38624773

RESUMO

Semiconductor ZnO aerogels were synthesized by a sol-gel process with different concentrations (2.5-7.5 wt.%) of Al (n-type) or Na (p-type) and dried under supercritical CO2. The materials were calcined at 500 °C to remove the organic content and to crystallize the ZnO. The microstructure of the ZnO-based aerogels comprises a porous structure with hexagonal and platelet-shaped interconnected particles. The bandgap of the aerogels doped with Al decreased significantly compared to pure, undoped ZnO aerogels, while their specific surface area increased. For the electrical characterization of the ZnO-Na/ZnO-Al junctions, the doped ZnO aerogels were deposited on commercial glass substrates coated with indium tin oxide (ITO) by drop casting method. The I-V curves of the p-n homojuntions revealed a characteristic diode rectifying behavior.

3.
Waste Manag ; 136: 273-282, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34737129

RESUMO

Activated carbons were prepared from different Amazonian fruit waste-derived biomass residues from the Amazon to store CO2 at low pressure. The samples were carbonized in under flowing N2 flow atmosphere and activated with KOH. The carbon materials obtained were physically and structurally characterized by the analysis of N2 isotherms for textural characterization, X-ray fluorescence (XRF), ash content, X-ray diffraction (XRD), Raman spectroscopy, scanning electron microscopy (SEM), and applied for CO2 adsorption. Temperature programmed desorption (TPD), the isosteric heat were also calculated. The values of the specific surface area (SBET) ranged from 1824 to 2004 m2/g, and the total pore volume varied between 0.68 and 0.79 cm3/g. These results confirm that the obtained activated carbons are microporous materials. The highest CO2 adsorption under the pressure of 1 bar was achieved in activated carbon derived from andiroba seeds ANKO1, the adsorption of carbon dioxide at 1 bar was being 7.18 and 4.81 mmol/g at 273 K and 298 K, respectively. As a result, the most important factor in the preparation of activated carbon for CO2 capture is primarily rich in extremely the high amount of small micropores.


Assuntos
Dióxido de Carbono , Carvão Vegetal , Adsorção , Biomassa , Frutas
4.
Biomed Microdevices ; 23(1): 2, 2021 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-33386434

RESUMO

This study reports on the fabrication of biocompatible organic devices by means of inkjet printing with a novel combination of materials. The devices were fabricated on Parylene C (PaC), a biocompatible and flexible polymer substrate. The contact tracks were inkjet-printed using a silver nanoparticle ink, while the active sites were inkjet-printed using a poly (3,4ethylenedioxythiophene)/polystyrene sulfonate (PEDOT:PSS) solution. To insulate the final device, a polyimide ink was used to print a thick film, leaving small open windows upon the active sites. Electrical characterization of the final device revealed conductivities in the order of 103 and 102 S.cm-1 for Ag and PEDOT based inks, respectively. Cell adhesion assays performed with PC-12 cells after 96 h of culture, and B16F10 cells after 24 h of culture, demonstrated that the cells adhered on top of the inks and cell differentiation occurred, which indicates Polyimide and PEDOT:PSS inks are non-toxic to these cells. The results indicate that PaC, along with its surface-treated variants, is a potentially useful material for fabricating cell-based microdevices.


Assuntos
Nanopartículas Metálicas , Sobrevivência Celular , Eletrodos , Polímeros/toxicidade , Prata/toxicidade , Xilenos
5.
Nat Commun ; 9(1): 892, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29497036

RESUMO

A better understanding of the cell-fate transitions that occur in complex cellular ecosystems in normal development and disease could inform cell engineering efforts and lead to improved therapies. However, a major challenge is to simultaneously identify new cell states, and their transitions, to elucidate the gene expression dynamics governing cell-type diversification. Here, we present CellRouter, a multifaceted single-cell analysis platform that identifies complex cell-state transition trajectories by using flow networks to explore the subpopulation structure of multi-dimensional, single-cell omics data. We demonstrate its versatility by applying CellRouter to single-cell RNA sequencing data sets to reconstruct cell-state transition trajectories during hematopoietic stem and progenitor cell (HSPC) differentiation to the erythroid, myeloid and lymphoid lineages, as well as during re-specification of cell identity by cellular reprogramming of monocytes and B-cells to HSPCs. CellRouter opens previously undescribed paths for in-depth characterization of complex cellular ecosystems and establishment of enhanced cell engineering approaches.


Assuntos
Células-Tronco Hematopoéticas/citologia , Análise de Célula Única/métodos , Diferenciação Celular , Linhagem da Célula , Expressão Gênica , Humanos , Análise de Sequência de RNA , Análise de Célula Única/instrumentação
6.
Mater Sci Eng C Mater Biol Appl ; 33(8): 4684-91, 2013 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-24094176

RESUMO

When cultured under static conditions, bacterial cellulose pellicles, by the nature of the polymer synthesis that involves molecular oxygen, are characterized by two distinct surface sides. The upper surface is denser in fibers (entangled) than the lower surface that shows greater surface porosity. Human umbilical vein endothelial cells (HUVECs) were used to exploit how the microarchitecture (i.e., surface porosity, fiber network structure, surface topology, and fiber density) of bacterial cellulose pellicle surfaces influence cell-biomaterial interaction and therefore cell behavior. Adhesion, cell ingrowth, proliferation, viability and cell death mechanisms were evaluated on the two pellicle surface sides. Cell behavior, including secondary necrosis, is influenced only by the microarchitecture of the surface, since the biomaterial is extremely pure (constituted of cellulose and water only). Cell-cellulose fiber interaction is the determinant signal in the cell-biomaterial responses, isolated from other frequently present interferences such as protein and other chemical traces usually present in cell culture matrices. Our results suggest that microarchitecture of hydrogel materials might determine the performance of biomedical products, such as bacterial cellulose tissue engineering constructs (BCTECs).


Assuntos
Hidrogel de Polietilenoglicol-Dimetacrilato/química , Nanofibras/química , Adesão Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Celulose/química , Celulose/metabolismo , Celulose/toxicidade , Gluconacetobacter/química , Gluconacetobacter/metabolismo , Células Endoteliais da Veia Umbilical Humana , Humanos , Nanofibras/toxicidade , Porosidade , Propriedades de Superfície , Engenharia Tecidual
7.
Mater Sci Eng C Mater Biol Appl ; 33(8): 4739-45, 2013 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-24094182

RESUMO

Bacterial cellulose (BC) produced by Gluconacetobacter hansenii is a suitable biopolymer for biomedical applications. In order to modulate the properties of BC and expand its use as substrate for tissue engineering mainly in the form of biomembranes, glucose or dextrin were added into a BC fermentation mannitol-based medium (BCGl and BCDe, respectively) under static culture conditions. SEM images showed effects on fiber density and porosity on both sides of the BC membranes. Both enriched media decreased the BET surface area, water holding capacity, and rehydration rate. Fourier transform infrared (attenuated total reflectance mode) spectroscopy (FTIR-ATR) analysis revealed no change in the chemical structure of BC. L929 fibroblast cells were seeded on all BC-based membranes and evaluated in aspects of cell adhesion, proliferation and morphology. BCG1 membranes showed the highest biological performance and hold promise for the use in tissue engineering applications.


Assuntos
Celulose/química , Meios de Cultura/química , Dextrinas/química , Glucose/química , Manitol/química , Membranas Artificiais , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Adesão Celular/efeitos dos fármacos , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Celulose/metabolismo , Meios de Cultura/farmacologia , Fibroblastos/citologia , Gluconacetobacter/efeitos dos fármacos , Gluconacetobacter/crescimento & desenvolvimento , Gluconacetobacter/metabolismo , Humanos , Porosidade
8.
Carbohydr Polym ; 94(1): 655-62, 2013 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-23544587

RESUMO

An electrically conducting composite based on bacterial cellulose (BC) and polypyrrole (PPy) was prepared through in situ oxidative polymerization of pyrrole (Py) in the presence of BC membrane using ammonium persulfate (APS), as an oxidant. The electrical conductivity, morphology, mechanical properties and thermal stability of the composites obtained using APS (BC/PPy·APS) were evaluated and compared with BC/PPy composites prepared using as oxidant agent Iron III chloride hexahydrate (FeCl3·6H2O). The morphology of the BC/PPy·APS composites is characterized by spherical conducting nanoparticles uniformly distributed on the BC nanofiber surface, while the composites produced with FeCl3·6H2O (BC/PPy·FeCl3) is composed of a continuous conducting polymer layer coating the BC-nanofibers. The electrical conductivity of BC/PPy·FeCl3 was 100-fold higher than that found for BC/PPy·APS composites. In order to understand the site-specific interaction between PPy and BC functional groups, both composites were characterized by Fourier transform infrared (attenuated total reflectance mode) spectroscopy attenuation reflectance (FTIR-ATR) and X-ray photoelectron spectrometry (XPS). The affinity between functional groups of PPy·FeCl3 and BC is higher than that found for BC/PPy·APS composite. In addition, the tensile properties were also influenced by the chemical affinity of both components in the polymer composites.


Assuntos
Celulose/química , Nanocompostos/química , Polímeros/química , Polissacarídeos Bacterianos/química , Pirróis/química , Celulose/ultraestrutura , Condutividade Elétrica , Nanocompostos/ultraestrutura , Oxirredução , Espectroscopia Fotoeletrônica , Polimerização , Polissacarídeos Bacterianos/ultraestrutura , Espectroscopia de Infravermelho com Transformada de Fourier , Resistência à Tração , Termodinâmica , Termogravimetria
9.
Electron. j. biotechnol ; 15(3): 8-8, May 2012. ilus, tab
Artigo em Inglês | LILACS | ID: lil-640552

RESUMO

Background: Unlike petroleum-based synthetic plastics, biodegradable biopolymer generation from industrial residue is a key strategy to reduce costs in the production process, as well as in the waste management, since efficient industrial wastewater treatment could be costly. In this context, the present work describes the prospection and use of bacterial strains capable to bioconvert cassava starch by-product into biodegradable polyhydroxyalkanoates (PHAs). Results: The first step of this study was the bacterial competence screening which was conducted with 72 strains covering 21 Bacillus and related species. The microorganism growth in a medium with a starch substrate was measured by an innovative MTT assay, while the ability of the bacteria to secrete amylase and produce PHA was evaluated by the Nile Red Dye method. Based on growth and potential for PHA production, four isolates were selected and identified as Bacillus megaterium by 16S rRNA sequencing. When cultivated in hydrolyzed cassava starch by-product, maximum production reached 4.97 g dry biomass/L with 29.7 percent of Poly-(3-hydroxybutyrate) (characterized by FTIR). Conclusions: MTT assay proved to be a reliable methodology for monitoring bacterial growth in insoluble media. Selected amylolytic strains could be used as an alternative industrial process for biodegradable plastics production from starchy residues, reducing costs for biodegradable biopolymer production and wastewater treatment operations.


Assuntos
Bacillus megaterium , Plásticos Biodegradáveis , Poli-Hidroxialcanoatos , Amido , Biopolímeros , Biotransformação , Sais de Tetrazólio , Tiazóis
10.
Curr Microbiol ; 57(5): 469-76, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18820969

RESUMO

The Chromobacterium violaceum ATCC 12472 genome was sequenced by The Brazilian National Genome Project Consortium. Previous annotation reported the presence of cellulose biosynthesis genes in that genome. Analysis of these genes showed that, as observed in other bacteria, they are organized in two operons. In the present work, experimental evidences of the presence of cellulose in the extracellular matrix of the biofilm produced by C. violaceum in static cultures are shown. Biofilm samples were enzymatically digested by cellulase, releasing glucose units, suggesting the presence of cellulose as an extracellular matrix component. Fluorescence microscopy observations showed that C. violaceum produces a cellulase-sensitive extracellular matrix composed of fibers able to bind calcofluor. C. violaceum grows on medium containing Congo red, forming brown-red colonies. Together, these results suggest that cellulase-susceptible matrix material is cellulose. Scanning electronic microscopy analysis showed that the extracellular matrix exhibited a network of microfibrils, typical of bacterial cellulose. Although cellulose production is widely distributed between several bacterial species, including at least the groups of Gram-negative proteobacteria alpha and gamma, we give for the first time experimental evidence for cellulose production in beta-proteobacteria.


Assuntos
Celulose/biossíntese , Chromobacterium/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Celulose/ultraestrutura , Chromobacterium/genética , Chromobacterium/ultraestrutura , Óperon
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA