Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Biomech Model Mechanobiol ; 23(2): 525-537, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38063955

RESUMO

Transcatheter aortic valve implantation (TAVI) and thoracic endovascular aortic repair (TEVAR) are minimally invasive procedures for treating aortic valves and diseases. Finite element simulations have proven to be valuable tools in predicting device-related complications. In the literature, the inclusion of aortic pre-stress has not been widely investigated. It plays a crucial role in determining the biomechanical response of the vessel and the device-tissue interaction. This study aims at demonstrating how and when to include the aortic pre-stress in patient-specific TAVI and TEVAR simulations. A percutaneous aortic valve and a stent-graft were implanted in aortic models reconstructed from patient-specific CT scans. Two scenarios for each patient were compared, i.e., including and neglecting the wall pre-stress. The neglection of pre-stress underestimates the contact pressure of 48% and 55%, the aorta stresses of 162% and 157%, the aorta strains of 77% and 21% for TAVI and TEVAR models, respectively. The stent stresses are higher than 48% with the pre-stressed aorta in TAVI simulations; while, similar results are obtained in TEVAR cases. The distance between the device and the aorta is similar with and without pre-stress. The inclusion of the aortic wall pre-stress has the capability to give a better representation of the biomechanical behavior of the arterial tissues and the implanted device. It is suggested to include this effect in patient-specific simulations replicating the procedures.


Assuntos
Aneurisma da Aorta Torácica , Procedimentos Endovasculares , Substituição da Valva Aórtica Transcateter , Humanos , Procedimentos Endovasculares/métodos , Valva Aórtica/cirurgia , Stents , Aorta/cirurgia , Substituição da Valva Aórtica Transcateter/métodos , Resultado do Tratamento , Aorta Torácica/cirurgia , Prótese Vascular
3.
J Vasc Surg Cases Innov Tech ; 9(3): 101269, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37635740

RESUMO

Numerical simulations of thoracic endovascular aortic repair (TEVAR) may be implemented in the preoperative workflow if credible and reliable. We present the application of a TEVAR simulation methodology to an 82-year-old woman with a penetrating atherosclerotic ulcer in the left hemiarch, that underwent a left common carotid artery to left subclavian artery bypass and consequent TEVAR in zone 2. During the intervention, kinking of the distal thoracic stent graft occurred and the simulation was able to reproduce this event. This report highlights the potential and reliability of TEVAR simulations to predict perioperative adverse events and short-term postoperative technical results.

4.
Eur J Vasc Endovasc Surg ; 66(6): 784-796, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37330201

RESUMO

OBJECTIVE: Pre-procedural planning of thoracic endovascular aortic repair (TEVAR) may implement computational adjuncts to predict technical and clinical outcomes. The aim of this scoping review was to explore the currently available TEVAR procedure and stent graft modelling options. DATA SOURCES: PubMed (MEDLINE), Scopus, and Web of Science were systematically searched (English language, up to 9 December 2022) for studies presenting a virtual thoracic stent graft model or TEVAR simulation. REVIEW METHODS: The Preferred Reporting Items for Systematic Reviews and Meta-Analyses Extension for Scoping Reviews (PRISMA-ScR) was followed. Qualitative and quantitative data were extracted, compared, grouped, and described. Quality assessment was performed using a 16 item rating rubric. RESULTS: Fourteen studies were included. Among the currently available in silico simulations of TEVAR, severe heterogeneity exists in study characteristics, methodological details, and evaluated outcomes. Ten studies (71.4%) were published during the last five years. Eleven studies (78.6%) included heterogeneous clinical data to reconstruct patient specific aortic anatomy and disease (e.g., type B aortic dissection, thoracic aortic aneurysm) from computed tomography angiography imaging. Three studies (21.4%) constructed idealised aortic models with literature input. The applied numerical methods consisted of computational fluid dynamics analysing aortic haemodynamics in three studies (21.4%) and finite element analysis analysing structural mechanics in the others (78.6%), including or excluding aortic wall mechanical properties. The thoracic stent graft was modelled as two separate components (e.g., graft, nitinol) in 10 studies (71.4%), as a one component homogenised approximation (n = 3, 21.4%), or including nitinol rings only (n = 1, 7.1%). Other simulation components included the catheter for virtual TEVAR deployment and numerous outcomes (e.g., Von Mises stresses, stent graft apposition, drag forces) were evaluated. CONCLUSION: This scoping review identified 14 severely heterogeneous TEVAR simulation models, mostly of intermediate quality. The review concludes there is a need for continuous collaborative efforts to improve the homogeneity, credibility, and reliability of TEVAR simulations.


Assuntos
Aneurisma da Aorta Torácica , Implante de Prótese Vascular , Procedimentos Endovasculares , Humanos , Prótese Vascular , Correção Endovascular de Aneurisma , Aorta Torácica/diagnóstico por imagem , Aorta Torácica/cirurgia , Stents , Implante de Prótese Vascular/efeitos adversos , Implante de Prótese Vascular/métodos , Reprodutibilidade dos Testes , Procedimentos Endovasculares/efeitos adversos , Procedimentos Endovasculares/métodos , Complicações Pós-Operatórias/cirurgia , Resultado do Tratamento , Aneurisma da Aorta Torácica/diagnóstico por imagem , Aneurisma da Aorta Torácica/cirurgia , Estudos Retrospectivos
5.
J Biomech ; 146: 111423, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36584506

RESUMO

Thoracic Endovascular Aortic Repair (TEVAR) is a minimally invasive technique to treat thoracic aorta pathologies and consists of placing a self-expandable stent-graft into the pathological region to restore the vessel lumen and recreate a more physiological condition. Exhaustive computational models, namely the finite element analysis, can be implemented to reproduce the clinical procedure. In this context, numerical models, if used for clinical applications, must be reliable and the simulation credibility should be proved to predict clinical procedure outcomes or to build in-silico clinical trials. This work aims first at applying a previously validated TEVAR methodology to a patient-specific case. Then, defining the TEVAR procedure performed on a patient population as the context of use, the overall applicability of the TEVAR modeling is assessed to demonstrate the reliability of the model itself following a step-by-step method based on the ASME V&V40 protocol. Validation evidence sources are identified for the specific context of use and adopted to demonstrate the applicability of the numerical procedure, thereby answering a question of interest that evaluates the deployed stent-graft configuration in the vessel.


Assuntos
Aneurisma da Aorta Torácica , Implante de Prótese Vascular , Procedimentos Endovasculares , Humanos , Prótese Vascular , Stents , Aneurisma da Aorta Torácica/cirurgia , Reprodutibilidade dos Testes , Resultado do Tratamento , Aorta Torácica/cirurgia , Estudos Retrospectivos
6.
Ann Biomed Eng ; 50(12): 1941-1953, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35854187

RESUMO

Thoracic Endovascular Aortic Repair (TEVAR) is the preferred treatment option for thoracic aortic pathologies and consists of inserting a self-expandable stent-graft into the pathological region to restore the lumen. Computational models play a significant role in procedural planning and must be reliable. For this reason, in this work, high-fidelity Finite Element (FE) simulations are developed to model thoracic stent-grafts. Experimental crimp/release tests are performed to calibrate stent-grafts material parameters. Stent pre-stress is included in the stent-graft model. A new methodology for replicating device insertion and deployment with explicit FE simulations is proposed. To validate this simulation, the stent-graft is experimentally released into a 3D rigid aortic phantom with physiological anatomy and inspected in a computed tomography (CT) scan at different time points during deployment with an ad-hoc set-up. A verification analysis of the adopted modeling features compared to the literature is performed. With the proposed methodology the error with respect to the CT is on average 0.92 ± 0.64%, while it is higher when literature models are adopted (on average 4.77 ± 1.83%). The presented FE tool is versatile and customizable for different commercial devices and applicable to patient-specific analyses.


Assuntos
Implante de Prótese Vascular , Procedimentos Endovasculares , Treinamento com Simulação de Alta Fidelidade , Humanos , Prótese Vascular , Stents , Aorta Torácica/diagnóstico por imagem , Aorta Torácica/cirurgia , Resultado do Tratamento , Desenho de Prótese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...