Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Sci ; 8(5): 3374-3378, 2017 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-28507707

RESUMO

Catalytic remediation of automobile exhaust has relied on precious metals (PMs) including platinum (Pt). Herein, we report that an intermetallic phase of Ni and niobium (Nb) (i.e., Ni3Nb) exhibits a significantly higher activity than that of Pt for the remediation of the most toxic gas in exhaust (i.e., nitrogen monoxide (NO)) in the presence of carbon monoxide (CO). When subjected to the exhaust-remediation atmosphere, Ni3Nb spontaneously evolves into a catalytically active nanophase-separated structure consisting of filamentous Ni networks (thickness < 10 nm) that are incorporated in a niobium oxide matrix (i.e., NbO x (x < 5/2)). The exposure of the filamentous Ni promotes NO dissociation, CO oxidation and N2 generation, and the NbO x matrix absorbs excessive nitrogen adatoms to retain the active Ni0 sites at the metal/oxide interface. Furthermore, the NbO x matrix immobilizes the filamentous Ni at elevated temperatures to produce long-term and stable catalytic performance over hundreds of hours.

2.
Phys Chem Chem Phys ; 18(8): 5932-7, 2016 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-26352924

RESUMO

Tin-dioxide nanofacets (SnO2 NFs) are crystal-engineered so that oxygen defects on the maximal {113} surface are long-range ordered to give rise to a non-occupied defect band (DB) in the bandgap. SnO2 NFs-supported platinum-nanoparticles exhibit an enhanced ethanol-electrooxidation activity due to the promoted charge-transport via the DB at the metal-semiconductor interface.

3.
Phys Chem Chem Phys ; 17(7): 4879-87, 2015 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-25271906

RESUMO

The surface electronic structure and CO-oxidation activity of Pt and Pt alloys, Pt3T (T = Ti, Hf, Ta, Pt), were investigated. At temperatures below 538 K, the CO-oxidation activities of Pt and Pt3T increased in the order Pt < Pt3Ti < Pt3hHf < Pt3Ta. The center-of-gravity of the Pt d-band (the d-band center) of Pt and Pt3T was theoretically calculated to follow the trend Pt3Ti < Pt3Ta < Pt3Hf < Pt. The CO-oxidation activity showed a volcano-type dependence on the d-band center, where Pt3Ta exhibited a maximum in activity. Theoretical calculations demonstrated that the adsorption energy of CO on the catalyst surface monotonically decreases with the lowering of the d-band center because of diminished hybridization of the surface d-band and the lowest-unoccupied molecular orbital (LUMO) of CO. The observed volcano-type correlation between the d-band center and the CO oxidation activity is rationalized in terms of the CO adsorption energy, which counterbalances the surface coverage by CO and the rate of CO oxidation.

4.
Chem Commun (Camb) ; 50(98): 15553-6, 2014 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-25357137

RESUMO

Skeletal gold nanocages (Au NCs) are synthesized and coated with TiO2 layers (TiO2-Au NCs). The TiO2-Au NCs exhibit enhanced photodecomposition activity toward acetaldehyde under visible light (>400 nm) illumination because hot electrons are generated over the Au NCs by local surface plasmon resonance (LSPR) and efficiently transported across the metal/semiconductor interface via the defect states of TiO2.

5.
ACS Appl Mater Interfaces ; 6(18): 16124-30, 2014 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-25184479

RESUMO

Although compositional tuning of metal nanoparticles (NPs) has been extensively investigated, possible control of the catalytic performance through bulk-structure tuning is surprisingly overlooked. Here we report that the bulk structure of intermetallic ZrPt3 NPs can be engineered by controlled annealing and their catalytic performance is significantly enhanced as the result of bulk-structural transformation. Chemical reduction of organometallic precursors yielded the desired ZrPt3 NPs with a cubic FCC-type structure (c-ZrPt3 NPs). The c-ZrPt3 NPs were then transformed to a different phase of ZrPt3 with a hexagonal structure (h-ZrPt3 NPs) by annealing at temperatures between 900 and 1000 °C. The h-ZrPt3 NPs exhibited higher catalytic activity and long-term stability than either the c-ZrPt3 NPs or commercial Pt/C NPs toward the electro-oxidation of ethanol. Theoretical calculations have elucidated that the enhanced activity of the h-ZrPt3 NPs is attributed to the increased surface energy, whereas the stability of the catalyst is retained by the lowered bulk-free-energy.

6.
Adv Mater ; 26(26): 4481-5, 2014 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-24782389

RESUMO

A copper(II)-oxide-based exhaust catalyst exhibits better activity than Pt- and Rh-nanoparticle catalysts in NO remediation at 175 °C. Following theoretical design, the CuO catalyst is rationally prepared; CuO nanoplates bearing a maximized amount of the active {001} facet are arranged in interleaved layers. A field test using a commercial gasoline engine demonstrates the ability of the catalyst to remove NO from the exhaust of small vehicles.

7.
Chem Commun (Camb) ; 50(49): 6451-3, 2014 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-24752450

RESUMO

Atomically ordered nickel carbide, Ni3C, was synthesized by reduction of nickel cyclopentadienyl (NiCp2) with sodium naphthalide to form Ni clusters coordinated by Cp (Ni-Cp clusters). Ni-Cp clusters were thermally decomposed to Ni3C nanoparticles smaller than 10 nm. The Ni3C nanoparticles showed better performance than Ni nanoparticles and Au nanoparticles in the electrooxidation of sodium borohydride.

8.
J Nanosci Nanotechnol ; 14(6): 4443-8, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24738410

RESUMO

Mesoporous materials with tailored microstructures are of increasing importance in practical applications particularly for energy generation and/or storage. Here we report a mesoporous copper material (MS-Cu) can be prepared in a hierarchical microstructure and exhibit high catalytic performance for the half-cell reaction of direct ammonium borane (NH3BH3) fuel cells (DABFs). Hierarchical copper oxide (CuO) nanoplates (CuO Npls) were first synthesized in a hydrothermal condition. CuO Npls were then reduced at room temperature using water solution of sodium borohydride (NaBH4) to yield the desired mesoporous copper material, MS-Cu, consisting of interleaved nanoplates with a high density of mesopores. The surface of MS-Cu comprised high-index facets, whereas a macroporous copper material (MC-Cu), which was prepared from CuO Npls at elevated temperatures in a hydrogen stream, was surrounded by low-index facets with a low density of active sites. MS-Cu exhibited a lower onset potential and improved durability for the electro-oxidation of NH3BH3 than MC-Cu or copper particles because of the catalytically active mesopores on the interleaved nanoplates.


Assuntos
Compostos de Boro/química , Cobre/química , Fontes de Energia Elétrica , Eletrodos , Nanopartículas Metálicas/química , Nanopartículas Metálicas/ultraestrutura , Nanoporos/ultraestrutura , Desenho de Equipamento , Análise de Falha de Equipamento , Nanotecnologia/instrumentação , Tamanho da Partícula , Porosidade
9.
ACS Appl Mater Interfaces ; 6(6): 3790-3, 2014 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-24611469

RESUMO

A mixed-valence tin oxide, (Sn(2+))2(Sn(4+))O4, was synthesized via a hydrothermal route. The Sn3O4 material consisted of highly crystalline {110} flexes. The Sn3O4 material, when pure platinum (Pt) was used as a co-catalyst, significantly catalyzed water-splitting in aqueous solution under illumination of visible light (λ > 400 nm), whereas neither Sn(2+)O nor Sn(4+)O2 was active toward the reaction. Theoretical calculations have demonstrated that the co-existence of Sn(2+) and Sn(4+) in Sn3O4 leads to a desirable band structure for photocatalytic hydrogen evolution from water solution. Sn3O4 has great potential as an abundant, cheap, and environmentally benign solar-energy conversion catalyst.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA