Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 10(5): eadi7284, 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38295161

RESUMO

The end-Permian mass extinction was the most severe ecological event during the Phanerozoic and has long been presumed contemporaneous across terrestrial and marine realms with global environmental deterioration triggered by the Siberian Traps Large Igneous Province. We present high-precision zircon U-Pb geochronology by the chemical abrasion-isotope dilution-thermal ionization mass spectrometry technique on tuffs from terrestrial to transitional coastal settings in Southwest China, which reveals a protracted collapse of the Cathaysian rainforest beginning after the onset of the end-Permian marine extinction. Integrated with high-resolution geochronology from coeval successions, our results suggest that the terrestrial extinction occurred diachronously with latitude, beginning at high latitudes during the late Changhsingian and progressing to the tropics by the early Induan, spanning a duration of nearly 1 million years. This latitudinal age gradient may have been related to variations in surface warming with more degraded environmental conditions at higher latitudes contributing to higher extinction rates.

2.
Sci Rep ; 12(1): 16026, 2022 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-36163377

RESUMO

The spectacular fossil fauna and flora preserved in the Upper Cretaceous terrestrial strata of North America's Western Interior Basin record an exceptional peak in the diversification of fossil vertebrates in the Campanian, which has been termed the 'zenith of dinosaur diversity'. The wide latitudinal distribution of rocks and fossils that represent this episode, spanning from northern Mexico to the northern slopes of Alaska, provides a unique opportunity to gain insights into dinosaur paleoecology and to address outstanding questions regarding faunal provinciality in connection to paleogeography and climate. Whereas reliable basin-wide correlations are fundamental to investigations of this sort, three decades of radioisotope geochronology of various vintages and limited compatibility has complicated correlation of distant fossil-bearing successions and given rise to contradictory paleobiogeographic and evolutionary hypotheses. Here we present new U-Pb geochronology by the CA-ID-TIMS method for 16 stratigraphically well constrained bentonite beds, ranging in age from 82.419 ± 0.074 Ma to 73.496 ± 0.039 Ma (2σ internal uncertainties), and the resulting Bayesian age models for six key fossil-bearing formations over a 1600 km latitudinal distance from northwest New Mexico, USA to southern Alberta, Canada. Our high-resolution chronostratigraphic framework for the upper Campanian of the Western Interior Basin reveals that despite their contrasting depositional settings and basin evolution histories, significant age overlap exists between the main fossil-bearing intervals of the Kaiparowits Formation (southern Utah), Judith River Formation (central Montana), Two Medicine Formation (western Montana) and Dinosaur Park Formation (southern Alberta). Pending more extensive paleontologic collecting that would allow more rigorous faunal analyses, our results support a first-order connection between paleoecologic and fossil diversities and help overcome the chronostratigraphic ambiguities that have impeded the testing of proposed models of latitudinal provinciality of dinosaur taxa during the Campanian.


Assuntos
Dinossauros , Alberta , Animais , Teorema de Bayes , Bentonita , Dinossauros/anatomia & histologia , Fósseis , Chumbo , Filogenia
3.
Nat Commun ; 13(1): 4856, 2022 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-35982047

RESUMO

Lakes are a major emitter of the atmospheric greenhouse gas methane (CH4); however, their roles in past climate warming episodes remain poorly understood owing to a scarcity of geological records. Here we report the occurrence of sustained and intensified microbial CH4 cycling in paleo-Lake Junggar in northwestern China, one of the largest known Phanerozoic lakes, during Early Permian climate warming. High-precision U-Pb geochronology refines the age of the upper Lucaogou Formation to the Artinskian, which marks a major glacial-to-postglacial climate transition. The 13C-enriched authigenic dolomites indicate active methanogenesis in the anoxic lake sediments, and 13C-depleted hopanes suggest vigorous methanotrophy in the water column. The intensification of CH4 cycling coincided with increasing global temperature, as evidenced from elevated continental chemical weathering. Our results suggest that the lacustrine CH4 emissions acted as a positive feedback to global warming and contributed to the demise of the Late Paleozoic Ice Age.


Assuntos
Biodiversidade , Metano , Clima , Lagos , Temperatura
4.
Sci Rep ; 11(1): 20023, 2021 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-34675327

RESUMO

Sauropodomorph dinosaurs dominated the herbivorous niches during the first 40 million years of dinosaur history (Late Triassic-Early Jurassic), yet palaeobiological factors that influenced their evolutionary success are not fully understood. For instance, knowledge on their behaviour is limited, although herding in sauropodomorphs has been well documented in derived sauropods from the Late Jurassic and Cretaceous. Here we report an exceptional fossil occurrence from Patagonia that includes over 100 eggs and skeletal specimens of 80 individuals of the early sauropodomorph Mussaurus patagonicus, ranging from embryos to fully-grown adults, with an Early Jurassic age as determined by high-precision U-Pb zircon geochronology. Most specimens were found in a restricted area and stratigraphic interval, with some articulated skeletons grouped in clusters of individuals of approximately the same age. Our new discoveries indicate the presence of social cohesion throughout life and age-segregation within a herd structure, in addition to colonial nesting behaviour. These findings provide the earliest evidence of complex social behaviour in Dinosauria, predating previous records by at least 40 My. The presence of sociality in different sauropodomorph lineages suggests a possible Triassic origin of this behaviour, which may have influenced their early success as large terrestrial herbivores.


Assuntos
Dinossauros/anatomia & histologia , Paleontologia/métodos , Animais , Argentina , Comportamento Animal , Evolução Biológica , Ovos , Fósseis , Geografia , Filogenia , Fatores de Tempo
5.
Sci Rep ; 10(1): 12782, 2020 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-32728077

RESUMO

Present knowledge of Late Triassic tetrapod evolution, including the rise of dinosaurs, relies heavily on the fossil-rich continental deposits of South America, their precise depositional histories and correlations. We report on an extended succession of the Ischigualasto Formation exposed in the Hoyada del Cerro Las Lajas (La Rioja, Argentina), where more than 100 tetrapod fossils were newly collected, augmented by historical finds such as the ornithosuchid Venaticosuchus rusconii and the putative ornithischian Pisanosaurus mertii. Detailed lithostratigraphy combined with high-precision U-Pb geochronology from three intercalated tuffs are used to construct a robust Bayesian age model for the formation, constraining its deposition between 230.2 ± 1.9 Ma and 221.4 ± 1.2 Ma, and its fossil-bearing interval to 229.20 + 0.11/- 0.15-226.85 + 1.45/- 2.01 Ma. The latter is divided into a lower Hyperodapedon and an upper Teyumbaita biozones, based on the ranges of the eponymous rhynchosaurs, allowing biostratigraphic correlations to elsewhere in the Ischigualasto-Villa Unión Basin, as well as to the Paraná Basin in Brazil. The temporally calibrated Ischigualasto biostratigraphy suggests the persistence of rhynchosaur-dominated faunas into the earliest Norian. Our ca. 229 Ma age assignment to Pi. mertii partially fills the ghost lineage between younger ornithischian records and the oldest known saurischians at ca. 233 Ma.

6.
Sci Adv ; 6(15): eaav9634, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32284988

RESUMO

The time of origin of the geodynamo has important implications for the thermal evolution of the planetary interior and the habitability of early Earth. It has been proposed that detrital zircon grains from Jack Hills, Western Australia, provide evidence for an active geodynamo as early as 4.2 billion years (Ga) ago. However, our combined paleomagnetic, geochemical, and mineralogical studies on Jack Hills zircons indicate that most have poor magnetic recording properties and secondary magnetization carriers that postdate the formation of the zircons. Therefore, the existence of the geodynamo before 3.5 Ga ago remains unknown.

7.
R Soc Open Sci ; 5(5): 180482, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29892465

RESUMO

In the last three decades, records of tribosphenidan mammals from India, continental Africa, Madagascar and South America have challenged the notion of a strictly Laurasian distribution of the group during the Cretaceous. Here, we describe a lower premolar from the Late Cretaceous Adamantina Formation, São Paulo State, Brazil. It differs from all known fossil mammals, except for a putative eutherian from the same geologic unity and Deccanolestes hislopi, from the Maastrichtian of India. The incompleteness of the material precludes narrowing down its taxonomic attribution further than Tribosphenida, but it is larger than most coeval mammals and shows a thin layer of parallel crystallite enamel. The new taxon helps filling two major gaps in the fossil record: the paucity of Mesozoic mammals in more northern parts of South America and of tribosphenidans in the Cretaceous of that continent. In addition, high-precision U-Pb geochronology provided a post-Turonian maximal age (≤87.8 Ma) for the type stratum, which is overlain by the dinosaur-bearing Marília Formation, constraining the age of the Adamantina Formation at the site to late Coniacian-late Maastrichtian. This represents the first radioisotopic age for the Bauru Group, a key stratigraphic unit for the study of Cretaceous tetrapods in Gondwana.

8.
Sci Rep ; 8(1): 141, 2018 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-29317730

RESUMO

The end-Triassic is characterized by one of the largest mass extinctions in the Phanerozoic, coinciding with major carbon cycle perturbations and global warming. It has been suggested that the environmental crisis is linked to widespread sill intrusions during magmatism associated with the Central Atlantic Magmatic Province (CAMP). Sub-volcanic sills are abundant in two of the largest onshore sedimentary basins in Brazil, the Amazonas and Solimões basins, where they comprise up to 20% of the stratigraphy. These basins contain extensive deposits of carbonate and evaporite, in addition to organic-rich shales and major hydrocarbon reservoirs. Here we show that large scale volatile generation followed sill emplacement in these lithologies. Thermal modeling demonstrates that contact metamorphism in the two basins could have generated 88,000 Gt CO2. In order to constrain the timing of gas generation, zircon from two sills has been dated by the U-Pb CA-ID-TIMS method, resulting in 206Pb/238U dates of 201.477 ± 0.062 Ma and 201.470 ± 0.089 Ma. Our findings demonstrate synchronicity between the intrusive phase and the end-Triassic mass extinction, and provide a quantified degassing scenario for one of the most dramatic time periods in the history of Earth.

9.
Proc Biol Sci ; 284(1860)2017 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-28794222

RESUMO

Titanosauria was the most diverse and successful lineage of sauropod dinosaurs. This clade had its major radiation during the middle Early Cretaceous and survived up to the end of that period. Among sauropods, this lineage has the most disparate values of body mass, including the smallest and largest sauropods known. Although recent findings have improved our knowledge on giant titanosaur anatomy, there are still many unknown aspects about their evolution, especially for the most gigantic forms and the evolution of body mass in this clade. Here we describe a new giant titanosaur, which represents the largest species described so far and one of the most complete titanosaurs. Its inclusion in an extended phylogenetic analysis and the optimization of body mass reveals the presence of an endemic clade of giant titanosaurs inhabited Patagonia between the Albian and the Santonian. This clade includes most of the giant species of titanosaurs and represents the major increase in body mass in the history of Titanosauria.


Assuntos
Evolução Biológica , Dinossauros , Fósseis , Animais , Tamanho Corporal , Filogenia
10.
Proc Biol Sci ; 282(1811)2015 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-26156768

RESUMO

A mid-Permian (Guadalupian epoch) extinction event at approximately 260 Ma has been mooted for two decades. This is based primarily on invertebrate biostratigraphy of Guadalupian-Lopingian marine carbonate platforms in southern China, which are temporally constrained by correlation to the associated Emeishan Large Igneous Province (LIP). Despite attempts to identify a similar biodiversity crisis in the terrestrial realm, the low resolution of mid-Permian tetrapod biostratigraphy and a lack of robust geochronological constraints have until now hampered both the correlation and quantification of terrestrial extinctions. Here we present an extensive compilation of tetrapod-stratigraphic data analysed by the constrained optimization (CONOP) algorithm that reveals a significant extinction event among tetrapods within the lower Beaufort Group of the Karoo Basin, South Africa, in the latest Capitanian. Our fossil dataset reveals a 74-80% loss of generic richness between the upper Tapinocephalus Assemblage Zone (AZ) and the mid-Pristerognathus AZ that is temporally constrained by a U-Pb zircon date (CA-TIMS method) of 260.259 ± 0.081 Ma from a tuff near the top of the Tapinocephalus AZ. This strengthens the biochronology of the Permian Beaufort Group and supports the existence of a mid-Permian mass extinction event on land near the end of the Guadalupian. Our results permit a temporal association between the extinction of dinocephalian therapsids and the LIP volcanism at Emeishan, as well as the marine end-Guadalupian extinctions.


Assuntos
Biodiversidade , Extinção Biológica , Fósseis , Répteis , Animais , África do Sul
11.
R Soc Open Sci ; 1(2): 140184, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26064540

RESUMO

Dinosaur skeletal remains are almost unknown from northern South America. One of the few exceptions comes from a small outcrop in the northernmost extension of the Andes, along the western border of Venezuela, where strata of the La Quinta Formation have yielded the ornithischian Laquintasaura venezuelae and other dinosaur remains. Here, we report isolated bones (ischium and tibia) of a small new theropod, Tachiraptor admirabilis gen. et sp. nov., which differs from all previously known members of the group by an unique suite of features of its tibial articulations. Comparative/phylogenetic studies place the new form as the sister taxon to Averostra, a theropod group that is known primarily from the Middle Jurassic onwards. A new U-Pb zircon date (isotope dilution thermal-ionization mass spectrometry; ID-TIMS method) from the bone bed matrix suggests an earliest Jurassic maximum age for the La Quinta Formation. A dispersal-vicariance analysis suggests that such a stratigraphic gap is more likely to be filled by new records from north and central Pangaea than from southern areas. Indeed, our data show that the sampled summer-wet equatorial belt, which yielded the new taxon, played a pivotal role in theropod evolution across the Triassic-Jurassic boundary.

13.
Science ; 334(6061): 1367-72, 2011 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-22096103

RESUMO

The end-Permian mass extinction was the most severe biodiversity crisis in Earth history. To better constrain the timing, and ultimately the causes of this event, we collected a suite of geochronologic, isotopic, and biostratigraphic data on several well-preserved sedimentary sections in South China. High-precision U-Pb dating reveals that the extinction peak occurred just before 252.28 ± 0.08 million years ago, after a decline of 2 per mil (‰) in δ(13)C over 90,000 years, and coincided with a δ(13)C excursion of -5‰ that is estimated to have lasted ≤20,000 years. The extinction interval was less than 200,000 years and synchronous in marine and terrestrial realms; associated charcoal-rich and soot-bearing layers indicate widespread wildfires on land. A massive release of thermogenic carbon dioxide and/or methane may have caused the catastrophic extinction.


Assuntos
Biodiversidade , Ecossistema , Extinção Biológica , Fósseis , Animais , Dióxido de Carbono , Isótopos de Carbono , China , Incêndios , Sedimentos Geológicos , Invertebrados/classificação , Isótopos , Chumbo , Espectrometria de Massas , Metano , Oceanos e Mares , Plantas/classificação , Técnica de Diluição de Radioisótopos , Datação Radiométrica , Água do Mar/química , Tempo , Urânio , Vertebrados/classificação
14.
Science ; 304(5674): 1126-9, 2004 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-15105458

RESUMO

We show that intraplate magmatism occurred 1106 to 1112 million years ago over an area of two million square kilometers within the Kalahari craton of southern Africa, during the same magnetic polarity chron as voluminous magmatism within the cratonic core of North America. These contemporaneous magmatic events occurred while the Rodinia supercontinent was being assembled and are inferred to be parts of a single large igneous province emplaced across the two cratons. Widespread intraplate magmatism during Rodinia assembly shows that mantle upwellings required to generate such provinces may occur independently of the supercontinent cycle.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...