Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Small ; 19(36): e2301838, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37119440

RESUMO

The protein corona forms spontaneously on nanoparticle surfaces when nanomaterials are introduced into any biological system/fluid. Reliable characterization of the protein corona is, therefore, a vital step in the development of safe and efficient diagnostic and therapeutic nanomedicine products. 2134 published manuscripts on the protein corona are reviewed and a down-selection of 470 papers spanning 2000-2021, comprising 1702 nanoparticle (NP) systems is analyzed. This analysis reveals: i) most corona studies have been conducted on metal and metal oxide nanoparticles; ii) despite their overwhelming presence in clinical practice, lipid-based NPs are underrepresented in protein corona research, iii) studies use new methods to improve reliability and reproducibility in protein corona research; iv) studies use more specific protein sources toward personalized medicine; and v) careful characterization of nanoparticles after corona formation is imperative to minimize the role of aggregation and protein contamination on corona outcomes. As nanoparticles used in biomedicine become increasingly prevalent and biochemically complex, the field of protein corona research will need to focus on developing analytical approaches and characterization techniques appropriate for each unique nanoparticle formulation. Achieving such characterization of the nano-bio interface of nanobiotechnologies will enable more seamless development and safe implementation of nanoparticles in medicine.


Assuntos
Nanopartículas Metálicas , Nanopartículas , Coroa de Proteína , Coroa de Proteína/química , Reprodutibilidade dos Testes , Proteínas/química , Nanomedicina , Nanopartículas/química
2.
Sensors (Basel) ; 22(20)2022 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-36298047

RESUMO

Alternative fuel sources, such as hydrogen-enriched natural gas (HENG), are highly sought after by governments globally for lowering carbon emissions. Consequently, the recognition of hydrogen as a valuable zero-emission energy carrier has increased, resulting in many countries attempting to enrich natural gas with hydrogen; however, there are rising concerns over the safe use, storage, and transport of H2 due to its characteristics such as flammability, combustion, and explosivity at low concentrations (4 vol%), requiring highly sensitive and selective sensors for safety monitoring. Microfluidic-based metal-oxide-semiconducting (MOS) gas sensors are strong tools for detecting lower levels of natural gas elements; however, their working mechanism results in a lack of real-time analysis techniques to identify the exact concentration of the present gases. Current advanced machine learning models, such as deep learning, require large datasets for training. Moreover, such models perform poorly in data distribution shifts such as instrumental variation. To address this problem, we proposed a Sparse Autoencoder-based Transfer Learning (SAE-TL) framework for estimating the hydrogen gas concentration in HENG mixtures using limited datasets from a 3D printed microfluidic detector coupled with two commercial MOS sensors. Our framework detects concentrations of simulated HENG based on time-series data collected from a cost-effective microfluidic-based detector. This modular gas detector houses metal-oxide-semiconducting (MOS) gas sensors in a microchannel with coated walls, which provides selectivity based on the diffusion pace of different gases. We achieve a dominant performance with the SAE-TL framework compared to typical ML models (94% R-squared). The framework is implementable in real-world applications for fast adaptation of the predictive models to new types of MOS sensor responses.


Assuntos
Hidrogênio , Microfluídica , Hidrogênio/análise , Gás Natural , Olfato , Gases/análise , Óxidos , Carbono , Aprendizado de Máquina
4.
Sci Rep ; 10(1): 18349, 2020 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-33110112

RESUMO

Fundamental restoration ecology and community ecology theories can help us better understand the underlying mechanisms of fecal microbiota transplantation (FMT) and to better design future microbial therapeutics for recurrent Clostridioides difficile infections (rCDI) and other dysbiosis-related conditions. In this study, stool samples were collected from donors and rCDI patients one week prior to FMT (pre-FMT), as well as from patients one week following FMT (post-FMT). Using metagenomic sequencing and machine learning, our results suggested that FMT outcome is not only dependent on the ecological structure of the recipients, but also the interactions between the donor and recipient microbiomes at the taxonomical and functional levels. We observed that the presence of specific bacteria in donors (Clostridioides spp., Desulfovibrio spp., Odoribacter spp. and Oscillibacter spp.) and the absence of fungi (Yarrowia spp.) and bacteria (Wigglesworthia spp.) in recipients prior to FMT could predict FMT success. Our results also suggested a series of interlocked mechanisms for FMT success, including the repair of the disturbed gut ecosystem by transient colonization of nexus species followed by secondary succession of bile acid metabolizers, sporulators, and short chain fatty acid producers.


Assuntos
Transplante de Microbiota Fecal , Fezes/microbiologia , Microbioma Gastrointestinal , Adulto , Bacteroidetes/metabolismo , Clostridiales/metabolismo , Clostridioides/metabolismo , Infecções por Clostridium/microbiologia , Infecções por Clostridium/terapia , Desulfovibrio/metabolismo , Feminino , Microbioma Gastrointestinal/genética , Humanos , Aprendizado de Máquina , Masculino , Metagenômica , Doadores de Tecidos , Resultado do Tratamento
5.
Adv Healthc Mater ; 9(5): e1901608, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31994348

RESUMO

There are several methods (e.g., enzyme-linked immunosorbent assay and liquid chromatography mass spectroscopy) that already use human plasma to detect a variety of possible diseases. However, this paper introduces the capabilities of magnetic levitation (Maglev) to detect disease (Opioid Use Disorder, used here as a model disease) by using levitation of human plasma proteins. The presented proof-of-concept findings revealed that the optical images of magnetically levitated plasma proteins carry important information about the health spectrum of plasma donors. In addition, the liquid chromatography mass spectroscopy analysis of the magnetically levitated plasma proteins demonstrated remarkable differences between the plasma of healthy individuals and patients with opioid use disorders. Overall, the presented method provides diagnostic value for disease detection using optical images of evolving magnetically levitated plasma proteins and/or proteomic information.


Assuntos
Transtornos Relacionados ao Uso de Opioides , Proteômica , Proteínas Sanguíneas , Humanos , Magnetismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...