Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
RSC Med Chem ; 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-39131887

RESUMO

Pseudomonas aeruginosa is an opportunistic critical 'priority 1' Gram-negative bacterium that poses a severe threat to public healthcare due to rising antibiotic resistance. Particularly, low membrane permeability and overexpression of efflux pumps in P. aeruginosa lead to intrinsic resistance that compromises the antibacterial activity of antibiotics. The broad-spectrum antibiotics class, tetracyclines, are rarely used to treat P. aeruginosa infections. In the present study, we describe a series of tobramycin-ciprofloxacin (TOB-CIP) conjugates in which the carboxylic acid of ciprofloxacin is linked to the aminoglycoside tobramycin using various tethers thereby generating a cationic amphiphile. The emerging amphiphilic conjugates potentiate tetracycline antibiotics including minocycline, doxycycline, tigecycline, and eravacycline against multidrug-resistant P. aeruginosa isolates. The structure-activity relationship investigation indicates that the flexible hydrophobic C12 carbon-chain linker in TOB-CIP conjugate 1a is an optimal potentiator of tetracyclines against tetracycline-resistant and -susceptible strains of P. aeruginosa. Furthermore, conjugate 1a consistently synergized with the 3rd generation tetracycline, eravacycline, in P. aeruginosa PAO1 in the presence of up to 25% fetal bovine serum (FBS).

2.
ChemMedChem ; 19(15): e202400175, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38679656

RESUMO

Multicomponent therapy combining antibiotics with enhancer molecules known as adjuvants is an emerging strategy to combat antimicrobial resistance. Niclosamide is a clinically relevant anthelmintic drug with potential to be repurposed for its inherent antibacterial activity against Gram-positive bacteria and its ability to potentiate the antibacterial activity of colistin against susceptible and resistant Gram-negative bacteria. Herein, sulfonamide analogs of niclosamide were prepared and found to enhance colistin activity against Gram-negative bacteria. The ability of niclosamide and the new sulfonamide analogs to synergize with bacitracin against vancomycin-resistant Enterococcus faecium was also discovered.


Assuntos
Antibacterianos , Bacitracina , Colistina , Testes de Sensibilidade Microbiana , Niclosamida , Sulfonamidas , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/síntese química , Colistina/farmacologia , Colistina/química , Relação Estrutura-Atividade , Niclosamida/farmacologia , Niclosamida/química , Niclosamida/síntese química , Sulfonamidas/farmacologia , Sulfonamidas/química , Sulfonamidas/síntese química , Bacitracina/farmacologia , Bacitracina/química , Bacitracina/síntese química , Estrutura Molecular , Bactérias Gram-Negativas/efeitos dos fármacos , Relação Dose-Resposta a Droga , Enterococcus faecium/efeitos dos fármacos , Sinergismo Farmacológico , Bactérias Gram-Positivas/efeitos dos fármacos
3.
Antibiotics (Basel) ; 13(1)2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38247602

RESUMO

Colistin is primarily used as a last resort antibiotic against highly resistant Gram-negative bacteria (GNB). Rising rates of colistin resistance, however, may limit future use of this agent. The anthelmintic drug niclosamide has been shown to enhance colistin activity in combination therapy, but a detailed structure-activity relationship (SAR) for niclosamide against GNB has yet to be studied. A series of niclosamide analogs were synthesized to perform an SAR, leading to the discovery of a lead compound that displayed comparable colistin-potentiating activity to niclosamide with reduced cytotoxicity. Overall, this work provides important insights into synthetic strategies for the future development of new niclosamide derivatives and demonstrates that toxicity to mammalian cells can be reduced while maintaining colistin potentiation.

4.
Bioorg Med Chem Lett ; 97: 129371, 2024 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-37301521

RESUMO

Many antibiotics specific to Gram-positive bacteria like rifampicin (RIF) are inactive in Gram-negative bacteria because of outer membrane (OM) impermeability. Enhancing the OM permeability of these antibiotics with the help of OM perturbants is a promising strategy to develop new agents against Gram-negative bacteria. Here we report the synthesis and biological properties of amphiphilic tribasic galactosamines as potential RIF potentiators. Our results demonstrate that tribasic galactose-based amphiphiles potentiate RIF in multidrug-resistant Acinetobacter baumannii and Escherichia coli but not Pseudomonas aeruginosa in low salt-containing media. Under these conditions, lead compounds 20, 22 and 35 lowered the minimum inhibitory concentration of RIF by 64- to 256-fold against Gram-negative bacteria. However, the RIF-potentiating effect was reduced when bivalent Mg++ or Ca++ ions were added in the media at physiological concentrations. Overall, our results indicate that amphiphilic tribasic galactosamine-based compounds show reduced RIF-potentiating effects when compared to amphiphilic tobramycin antibiotics at physiological salt concentrations.


Assuntos
Antibacterianos , Rifampina , Rifampina/farmacologia , Antibacterianos/farmacologia , Tobramicina/farmacologia , Bactérias Gram-Negativas , Permeabilidade da Membrana Celular , Testes de Sensibilidade Microbiana
5.
Antibiotics (Basel) ; 12(8)2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37627681

RESUMO

Metal ions, including Fe3+, affect the target site binding of some antibiotics and control the porin- and siderophore-mediated uptake of antibiotics. Amphiphilic tobramycins are an emerging class of antibiotic potentiators capable of synergizing with multiple classes of antibiotics against Gram-negative bacteria, including Pseudomonas aeruginosa. To study how the antibiotic-potentiating effect of amphiphilic tobramycins is affected by the presence of intermolecular iron chelators, we conjugated the FDA-approved iron chelator deferiprone (DEF) to tobramycin (TOB). Three TOB-DEF conjugates differing in the length of the carbon tether were prepared and tested for antibacterial activity and synergistic relationships with a panel of antibiotics against clinical isolates of P. aeruginosa. While all TOB-DEF conjugates were inactive against P. aeruginosa, the TOB-DEF conjugates strongly synergized with outer-membrane-impermeable antibiotics, such as novobiocin and rifampicin. Among the three TOB-DEF conjugates, 1c containing a C12 tether showed a remarkable and selective potentiating effect to improve the susceptibility of multidrug-resistant P. aeruginosa isolates to tetracyclines when compared with other antibiotics. However, the antibacterial activity and antibiotic-potentiating effect of the optimized conjugate was not enhanced under iron-depleted conditions, indicating that the function of the antibiotic potentiator is not affected by the Fe3+ concentration.

6.
ACS Infect Dis ; 9(9): 1754-1768, 2023 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-37603592

RESUMO

Carbapenem-resistant Pseudomonas aeruginosa (P. aeruginosa) was designated as a critical priority pathogen by the World Health Organization for which new therapeutic solutions are required. With the rapid dissemination of ß-lactamases in P. aeruginosa, ß-lactam (BL) antibiotics are used in conjunction with ß-lactamase inhibitors (BLI). The effectiveness of the BL/BLI combination could be further enhanced with the inclusion of an outer membrane (OM) permeabilizer, such as aminoglycosides and aminoglycoside-based adjuvants. Thus, the development of seven tobramycin derivatives reported herein focused on improving OM permeabilizing capabilities and reducing associated toxicity. The structure-activity relationship studies emphasized the effects of the nature of the cationic group; the number of polar head groups and positive charges; and flexibility, length, and steric bulk of the hydrophobic moiety. The optimized guanidinylated tobramycin-biphenyl derivative was noncytotoxic and demonstrated the ability to potentiate ceftazidime and aztreonam monotherapy and in dual combinations with avibactam against multidrug-resistant (MDR) and ß-lactamase harboring isolates of P. aeruginosa. The triple combination of ceftazidime/avibactam plus guanidinylated tobramycin-biphenyl resulted in rapid bactericidal activity within 4-8 h of treatment, demonstrating the potential application of these guanidinylated amphiphilic tobramycin derivatives in augmenting BL/BLI combinations.


Assuntos
Lactamas , Tobramicina , Tobramicina/farmacologia , Pseudomonas aeruginosa , Inibidores de beta-Lactamases/farmacologia , Ceftazidima , Monobactamas , Antibacterianos/farmacologia , Aminoglicosídeos
7.
ACS Omega ; 8(32): 29359-29373, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37599980

RESUMO

ß-Lactam antibiotics remain one of the most effective therapeutics to treat infections caused by Gram-negative bacteria (GNB). However, since ancient times, bacteria have developed multiple resistance mechanisms toward this class of antibiotics including overexpression of ß-lactamases, suppression of porins, outer membrane impermeability, overexpression of efflux pumps, and target modifications. To cope with these challenges and to extend the lifetime of existing ß-lactam antibiotics, ß-lactamase inhibitors are combined with ß-lactam antibiotics to prevent antibiotic inactivation by ß-lactamases. The combination therapy of an outer membrane permeabilizer with ß-lactam antibiotics is an alternative approach to overcoming bacterial resistance of ß-lactams in GNB. This approach is of particular interest for pathogens with highly impermeable outer membranes like Pseudomonas aeruginosa. Previous studies have shown that outer membrane permeabilizers can be designed by linking tobramycin and nebramine units together in the form of dimers or chimeras. In this study, we developed trimeric tobramycin and nebramine-based outer membrane permeabilizers presented on a central 1,3,5-triazine framework. The resultant trimers are capable of potentiating outer membrane-impermeable antibiotics but also ß-lactams and ß-lactam/ß-lactamase inhibitor combinations against resistant P. aeruginosa isolates. Furthermore, the microbiological susceptibility breakpoints of ceftazidime, aztreonam, and imipenem were reached by a triple combination consisting of an outer-membrane permeabilizer/ß-lactam/ß-lactamase inhibitor in ß-lactam-resistant P. aeruginosa isolates. Overall, our results indicate that trimeric tobramycins/nebramines can rescue clinically approved ß-lactams and ß-lactam/ß-lactamase inhibitor combinations from resistance.

8.
ACS Infect Dis ; 9(4): 864-885, 2023 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-36917096

RESUMO

According to the World Health Organization, antibiotic resistance is a global health threat. Of particular importance are infections caused by multidrug-resistant Gram-negative bacteria including Escherichia coli, Acinetobacter baumannii, Klebsiella pneumoniae, and Pseudomonas aeruginosa for which limited treatment options exist. Multiple and simultaneously occurring resistance mechanisms including outer membrane impermeability, overexpression of efflux pumps, antibiotic-modifying enzymes, and modification of genes and antibiotic targets have made antibiotic drug development more difficult against these pathogens. One strategy to cope with these challenges is the use of outer membrane permeabilizers that increase the intracellular concentration of antibiotics when used in combination. In some circumstances, this approach can rescue antibiotics from resistance or repurpose currently marketed antibiotics. Tobramycin-based hybrid antibiotic adjuvants that combine two outer membrane-active components have been previously shown to potentiate antibiotics by facilitating transit through the outer membrane, resulting in increased antibiotic accumulation within the cell. Herein, we extended the concept of tobramycin-based hybrid antibiotic adjuvants to tobramycin-based chimeras by engineering up to three different membrane-active antibiotic warheads such as tobramycin, 1-(1-naphthylmethyl)-piperazine, ciprofloxacin, and cyclam into a central 1,3,5-triazine scaffold. Chimera 4 (TOB-TOB-CIP) consistently synergized with ciprofloxacin, levofloxacin, and moxifloxacin against wild-type and fluoroquinolone-resistant P. aeruginosa. Moreover, the susceptibility breakpoints of ceftazidime, aztreonam, and imipenem were reached using the triple combination of chimera 4 with ceftazidime/avibactam, aztreonam/avibactam, and imipenem/relebactam, respectively, against ß-lactamase-harboring P. aeruginosa. Our findings demonstrate that tobramycin-based chimeras form a novel class of antibiotic potentiators capable of restoring the activity of antibiotics against P. aeruginosa.


Assuntos
Ceftazidima , Tobramicina , Tobramicina/farmacologia , Pseudomonas aeruginosa/genética , Fluoroquinolonas , Aztreonam , Antibacterianos/farmacologia , Imipenem , Monobactamas , Ciprofloxacina , Adjuvantes Farmacêuticos/farmacologia
9.
Antibiotics (Basel) ; 11(10)2022 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-36289935

RESUMO

Polymyxins are considered a last-line treatment against infections caused by multidrug-resistant (MDR) Gram-negative bacteria. In addition to their use as a potent antibiotic, polymyxins have also been utilized as outer membrane (OM) permeabilizers, capable of augmenting the activity of a partner antibiotic. Several polymyxin derivatives have been developed accordingly, with the objective of mitigating associated nephrotoxicity. The conversion of polymyxins to guanidinylated derivatives, whereby the L-γ-diaminobutyric acid (Dab) amines are substituted with guanidines, are described herein. The resulting guanidinylated colistin and polymyxin B (PMB) exhibited reduced antibacterial activity but preserved OM permeabilizing properties that allowed potentiation of several antibiotic classes. Rifampicin, erythromycin, ceftazidime and aztreonam were particularly potentiated against clinically relevant MDR Gram-negative bacteria. The potentiating effects of guanidinylated polymyxins with ceftazidime or aztreonam were further enhanced by adding the ß-lactamase inhibitor avibactam.

10.
Antibiotics (Basel) ; 11(3)2022 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-35326798

RESUMO

Outer membrane (OM) drug impermeability typically associated with a molecular weight above 600 Da and high hydrophobicity prevents accumulation of many antibiotics in Gram-negative bacteria (GNB). Previous studies have shown that ultrashort tetrabasic lipopeptides (UTBLPs) containing multiple lysine residues potentiate Gram-positive bacteria (GPB)-selective antibiotics in GNB by enhancing OM permeability. However, there is no available information on how N-substitution at the ζ-position of lysine in UTBLPs affects antibiotic potentiation in GNB. To study these effects, we prepared a series of branched and linear UTBLPs that differ in the degree of N-ζ-methylation and studied their potentiating effects with GPB-selective antibiotics including rifampicin, novobiocin, niclosamide, and chloramphenicol against wild-type and multidrug-resistant GNB isolates. Our results show that increasing N-ζ-methylation reduces or abolishes the potentiating effects of UTBLPs with rifampicin, novobiocin, and niclosamide against GNB. No trend was observed with chloramphenicol that is largely affected by efflux. We were unable to observe a correlation between the strength of the antibiotic potentiating effect to the increase in fluorescence in the 1-N-phenylnaphthylamine (NPN) OM permeability assay suggesting that other factors besides OM permeability of NPN play a role in antibiotic potentiation. In conclusion, our study has elucidated crucial structure-activity relationships for the optimization of polybasic antibiotic potentiators in GNB.

11.
Front Microbiol ; 12: 803309, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35003035

RESUMO

Recently reported peptidomimetics with increased resistance to trypsin were shown to sensitize priority multidrug-resistant (MDR) Gram-negative bacteria to novobiocin and rifampicin. To further optimize proteolytic stability, ß-amino acid-containing derivatives of these compounds were prepared, resulting in three dioctanoyl ultrashort tetrabasic ß-peptides (dUSTBßPs). The nonhemolytic dUSTBßP 3, comprised of three ß3-homoarginine residues and two fatty acyl tails eight carbons long, enhanced the antibacterial activity of various antibiotics from different classes. Notably, compound 3 retained the ability to potentiate novobiocin and rifampicin in wild-type Gram-negative bacteria against MDR clinical isolates of Pseudomonas aeruginosa, Acinetobacter baumannii, Escherichia coli, Klebsiella pneumoniae, and Enterobacter cloacae. dUSTBßP 3 reduced the minimum inhibitory concentration of novobiocin and rifampicin below their interpretative susceptibility breakpoints. Furthermore, compound 3 exhibited improved in vitro stability (86.8 ± 3.7% remaining) relative to its α-amino acid-based counterpart (39.5 ± 7.4% remaining) after a 2 h incubation in human plasma.

12.
ACS Infect Dis ; 6(6): 1413-1426, 2020 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-32357292

RESUMO

The development of new antibacterial agents and therapeutic approaches is of high importance to address the global problem of antibiotic resistance. Although antimicrobial peptides are known to synergize with certain antibiotics, their clinical application is limited by their systemic toxicity, protease instability, and high production cost. To overcome these problems, nine dilipid ultrashort tetrabasic peptidomimetics (dUSTBPs) were prepared consisting of three basic amino acids separated by a molecular scaffold, bis(3-aminopropyl)glycine, and were ligated to two fatty acids. Several nonhemolytic dUSTBPs were shown to enhance the activity of several antibiotics against pathogenic Gram-negative bacteria. More importantly, dUSTBP 8, consisting of three l-arginine units and a dilipid of 8 carbons long, potentiated novobiocin and rifampicin consistently against multidrug-resistant (MDR) clinical isolates of Pseudomonas aeruginosa, Acinetobacter baumannii, and Enterobacteriaceae. Preliminary studies suggested that dUSTBPs were likely to potentiate antibiotics through outer membrane permeabilization and/or disruption of active efflux and that dUSTBP 8 exhibited enhanced resistance to trypsin in comparison to the previously described di-C9-KKKK-NH2 antibiotic potentiator. The antibacterial activity of rifampicin and novobiocin was enhanced by dUSTBP 8 comparable to other known outer membrane permeabilizing potentiators including the gold standard polymyxin B nonapeptide. Our results indicate that ultrashort tetrabasic peptidomimetics are potent adjuvants that repurpose novobiocin and rifampicin as potent agents against priority MDR Gram-negative pathogens.


Assuntos
Novobiocina , Peptidomiméticos , Farmacorresistência Bacteriana Múltipla , Bactérias Gram-Negativas , Peptidomiméticos/farmacologia , Rifampina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA