Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Neurobiol ; 38: 13-28, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39008008

RESUMO

Animals utilize a repertoire of behavioral responses during everyday experiences. During a potentially dangerous encounter, defensive actions such as "fight, flight, or freeze" are selected for survival. The successful use of behavior is determined by a series of real-time computations combining an animal's internal (i.e., body) and external (i.e., environment) state. Brain-wide neural pathways are engaged throughout this process to detect stimuli, integrate information, and command behavioral output. The hippocampus, in particular, plays a role in the encoding and storing of the episodic information surrounding these encounters as putative "engram" or experience-modified cellular ensembles. Recalling a negative experience then reactivates a dedicated engram ensemble and elicits a behavioral response. How hippocampus-based engrams modulate brain-wide states and an animal's internal/external milieu to influence behavior is an exciting area of investigation for contemporary neuroscience. In this chapter, we provide an overview of recent technological advancements that allow researchers to tag, manipulate, and visualize putative engram ensembles, with an overarching goal of casually connecting their brain-wide underpinnings to behavior. We then discuss how hippocampal fear engrams alter behavior in a manner that is contingent on an environment's physical features as well as how they influence brain-wide patterns of cellular activity. Overall, we propose here that studies on memory engrams offer an exciting avenue for contemporary neuroscience to casually link the activity of cells to cognition and behavior while also offering testable theoretical and experimental frameworks for how the brain organizes experience.


Assuntos
Medo , Hipocampo , Animais , Hipocampo/fisiologia , Medo/fisiologia , Humanos , Encéfalo/fisiologia , Vias Neurais/fisiologia , Rede Nervosa/fisiologia , Memória/fisiologia , Comportamento Animal/fisiologia
2.
Adv Neurobiol ; 38: 3-10, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39008007

RESUMO

Johannes Gräff (JG): Steve, in preparation for this conversation, I pulled out the book "In search of memory" by Eric Kandel from my bookshelf. Obviously one big question is, given that this book was written more than 20 years ago: Are we there yet? Have we found memory?


Assuntos
Memória , Humanos , História do Século XX
3.
Elife ; 132024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38990919

RESUMO

Negative memories engage a brain and body-wide stress response in humans that can alter cognition and behavior. Prolonged stress responses induce maladaptive cellular, circuit, and systems-level changes that can lead to pathological brain states and corresponding disorders in which mood and memory are affected. However, it is unclear if repeated activation of cells processing negative memories induces similar phenotypes in mice. In this study, we used an activity-dependent tagging method to access neuronal ensembles and assess their molecular characteristics. Sequencing memory engrams in mice revealed that positive (male-to-female exposure) and negative (foot shock) cells upregulated genes linked to anti- and pro-inflammatory responses, respectively. To investigate the impact of persistent activation of negative engrams, we chemogenetically activated them in the ventral hippocampus over 3 months and conducted anxiety and memory-related tests. Negative engram activation increased anxiety behaviors in both 6- and 14-month-old mice, reduced spatial working memory in older mice, impaired fear extinction in younger mice, and heightened fear generalization in both age groups. Immunohistochemistry revealed changes in microglial and astrocytic structure and number in the hippocampus. In summary, repeated activation of negative memories induces lasting cellular and behavioral abnormalities in mice, offering insights into the negative effects of chronic negative thinking-like behaviors on human health.


Assuntos
Comportamento Animal , Hipocampo , Animais , Camundongos , Masculino , Hipocampo/metabolismo , Feminino , Medo , Memória/fisiologia , Ansiedade , Camundongos Endogâmicos C57BL , Neurônios/fisiologia , Neurônios/metabolismo
4.
Nat Commun ; 15(1): 4601, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38834558

RESUMO

Precise neurostimulation can revolutionize therapies for neurological disorders. Electrode-based stimulation devices face challenges in achieving precise and consistent targeting due to the immune response and the limited penetration of electrical fields. Ultrasound can aid in energy propagation, but transcranial ultrasound stimulation in the deep brain has limited spatial resolution caused by bone and tissue scattering. Here, we report an implantable piezoelectric ultrasound stimulator (ImPULS) that generates an ultrasonic focal pressure of 100 kPa to modulate the activity of neurons. ImPULS is a fully-encapsulated, flexible piezoelectric micromachined ultrasound transducer that incorporates a biocompatible piezoceramic, potassium sodium niobate [(K,Na)NbO3]. The absence of electrochemically active elements poses a new strategy for achieving long-term stability. We demonstrated that ImPULS can i) excite neurons in a mouse hippocampal slice ex vivo, ii) activate cells in the hippocampus of an anesthetized mouse to induce expression of activity-dependent gene c-Fos, and iii) stimulate dopaminergic neurons in the substantia nigra pars compacta to elicit time-locked modulation of nigrostriatal dopamine release. This work introduces a non-genetic ultrasound platform for spatially-localized neural stimulation and exploration of basic functions in the deep brain.


Assuntos
Estimulação Encefálica Profunda , Hipocampo , Ondas Ultrassônicas , Animais , Estimulação Encefálica Profunda/instrumentação , Estimulação Encefálica Profunda/métodos , Camundongos , Camundongos Endogâmicos C57BL , Neurônios Dopaminérgicos , Masculino , Dopamina/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo , Substância Negra , Neurônios/fisiologia , Transdutores
5.
Learn Mem ; 31(1-2)2024.
Artigo em Inglês | MEDLINE | ID: mdl-38408863

RESUMO

Memories of prior rewards bias our actions and future decisions. To determine the neural correlates of an appetitive associative learning task, we trained male mice to discriminate a reward-predicting cue over the course of 7 d. Encoding, recent recall, and remote recall were investigated to determine the areas of the brain recruited at each stage of learning. Using cFos as a proxy for neuronal activity, we found unique brain-wide patterns of activity across days that seem to correlate with distinct stages of learning. In particular, the prelimbic (PL) cortex was significantly recruited during the encoding of a novel association presentation, but its activity decreases as learning continues. To causally dissect the role of the PL in a reward memory across days, we chemogenetically inhibited first the PL entirely and then only tagged memory-bearing cells that were active during encoding in two stages of learning: early and late. Both nonspecific and specific PL inhibition experiments indicate that the PL drives behavior during late stages of learning to facilitate appropriate cue-driven behavior. Overall, our work underscores memory's role in discriminative reward seeking, and points to the PL as a target for modulating disorders in which impaired reward processing is a core component.


Assuntos
Córtex Cerebral , Córtex Pré-Frontal , Camundongos , Masculino , Animais , Córtex Pré-Frontal/fisiologia , Recompensa , Rememoração Mental , Condicionamento Clássico/fisiologia , Sinais (Psicologia)
6.
Cell Rep ; 43(3): 113850, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38401120

RESUMO

Engrams, or the physical substrate of memory, recruit heterogeneous cell types. Targeted reactivation of neurons processing discrete memories drives the behavioral expression of memory, though the underlying landscape of recruited cells and their real-time responses remain elusive. To understand how artificial stimulation of fear affects intra-hippocampal neuron-astrocyte dynamics as well as their behavioral consequences, we express channelrhodopsin-2 in an activity-dependent manner within dentate gyrus neurons while recording both cell types with fiber photometry in hippocampal ventral CA1 across learning and memory. Both cell types exhibit shock responsiveness, with astrocytic calcium events uniquely modulated by fear conditioning. Optogenetic stimulation of a hippocampus-mediated engram recapitulates coordinated calcium signatures time locked to freezing, mirroring those observed during natural fear memory recall. Our findings reveal cell-type-specific dynamics in the hippocampus during freezing behavior, emphasizing neuronal-astrocytic coupling as a shared mechanism enabling both natural and artificially induced memory retrieval and the behavioral expression of fear.


Assuntos
Cálcio , Giro Denteado , Giro Denteado/fisiologia , Memória/fisiologia , Hipocampo/fisiologia , Medo/fisiologia
7.
J Neurosci ; 44(2)2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38050098

RESUMO

Freezing is a defensive behavior commonly examined during hippocampal-mediated fear engram reactivation. How these cellular populations engage the brain and modulate freezing across varying environmental demands is unclear. To address this, we optogenetically reactivated a fear engram in the dentate gyrus subregion of the hippocampus across three distinct contexts in male mice. We found that there were differential amounts of light-induced freezing depending on the size of the context in which reactivation occurred: mice demonstrated robust light-induced freezing in the most spatially restricted of the three contexts but not in the largest. We then utilized graph theoretical analyses to identify brain-wide alterations in cFos expression during engram reactivation across the smallest and largest contexts. Our manipulations induced positive interregional cFos correlations that were not observed in control conditions. Additionally, regions spanning putative "fear" and "defense" systems were recruited as hub regions in engram reactivation networks. Lastly, we compared the network generated from engram reactivation in the small context with a natural fear memory retrieval network. Here, we found shared characteristics such as modular composition and hub regions. By identifying and manipulating the circuits supporting memory function, as well as their corresponding brain-wide activity patterns, it is thereby possible to resolve systems-level biological mechanisms mediating memory's capacity to modulate behavioral states.


Assuntos
Hipocampo , Memória , Masculino , Camundongos , Animais , Hipocampo/fisiologia , Memória/fisiologia , Medo/fisiologia , Neurônios/fisiologia
8.
Elife ; 122023 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-37401757

RESUMO

The theta rhythm, a quasi-periodic 4-10 Hz oscillation, is observed during memory processing in the hippocampus, with different phases of theta hypothesized to separate independent streams of information related to the encoding and recall of memories. At the cellular level, the discovery of hippocampal memory cells (engram neurons), as well as the modulation of memory recall through optogenetic activation of these cells, has provided evidence that certain memories are stored, in part, in a sparse ensemble of neurons in the hippocampus. In previous research, however, engram reactivation has been carried out using open-loop stimulation at fixed frequencies; the relationship between engram neuron reactivation and ongoing network oscillations has not been taken into consideration. To address this concern, we implemented a closed-loop reactivation of engram neurons that enabled phase-specific stimulation relative to theta oscillations in the local field potential in CA1. Using this real-time approach, we tested the impact of activating dentate gyrus engram neurons during the peak (encoding phase) and trough (recall phase) of theta oscillations. Consistent with previously hypothesized functions of theta oscillations in memory function, we show that stimulating dentate gyrus engram neurons at the trough of theta is more effective in eliciting behavioral recall than either fixed-frequency stimulation or stimulation at the peak of theta. Moreover, phase-specific trough stimulation is accompanied by an increase in the coupling between gamma and theta oscillations in CA1 hippocampus. Our results provide a causal link between phase-specific activation of engram cells and the behavioral expression of memory.


Assuntos
Hipocampo , Neurônios , Camundongos , Animais , Camundongos Endogâmicos C57BL , Neurônios/fisiologia , Hipocampo/fisiologia , Memória/fisiologia , Ritmo Teta/fisiologia , Giro Denteado/fisiologia
9.
J Neurosci ; 43(27): 4997-5013, 2023 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-37268419

RESUMO

Astrocytes are key cellular regulators within the brain. The basolateral amygdala (BLA) is implicated in fear memory processing, yet most research has entirely focused on neuronal mechanisms, despite a significant body of work implicating astrocytes in learning and memory. In the present study, we used in vivo fiber photometry in C57BL/6J male mice to record from amygdalar astrocytes across fear learning, recall, and three separate periods of extinction. We found that BLA astrocytes robustly responded to foot shock during acquisition, their activity remained remarkably elevated across days in comparison to unshocked control animals, and their increased activity persisted throughout extinction. Further, we found that astrocytes responded to the initiation and termination of freezing bouts during contextual fear conditioning and recall, and this behavior-locked pattern of activity did not persist throughout the extinction sessions. Importantly, astrocytes do not display these changes while exploring a novel context, suggesting that these observations are specific to the original fear-associated environment. Chemogenetic inhibition of fear ensembles in the BLA did not affect freezing behavior or astrocytic calcium dynamics. Overall, our work presents a real-time role for amygdalar astrocytes in fear processing and provides new insight into the emerging role of these cells in cognition and behavior.SIGNIFICANCE STATEMENT We show that basolateral amygdala astrocytes are robustly responsive to negative experiences, like shock, and display changed calcium activity patterns through fear learning and memory. Additionally, astrocytic calcium responses become time locked to the initiation and termination of freezing behavior during fear learning and recall. We find that astrocytes display calcium dynamics unique to a fear-conditioned context, and chemogenetic inhibition of BLA fear ensembles does not have an impact on freezing behavior or calcium dynamics. These findings show that astrocytes play a key real-time role in fear learning and memory.


Assuntos
Complexo Nuclear Basolateral da Amígdala , Camundongos , Animais , Masculino , Complexo Nuclear Basolateral da Amígdala/fisiologia , Cálcio , Astrócitos , Extinção Psicológica/fisiologia , Camundongos Endogâmicos C57BL , Medo/fisiologia
10.
Nat Rev Neurosci ; 24(8): 502-517, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37316588

RESUMO

There has been considerable speculation regarding the function of the dentate gyrus (DG) - a subregion of the mammalian hippocampus - in learning and memory. In this Perspective article, we compare leading theories of DG function. We note that these theories all critically rely on the generation of distinct patterns of activity in the region to signal differences between experiences and to reduce interference between memories. However, these theories are divided by the roles they attribute to the DG during learning and recall and by the contributions they ascribe to specific inputs or cell types within the DG. These differences influence the information that the DG is thought to impart to downstream structures. We work towards a holistic view of the role of DG in learning and memory by first developing three critical questions to foster a dialogue between the leading theories. We then evaluate the extent to which previous studies address our questions, highlight remaining areas of conflict, and suggest future experiments to bridge these theories.


Assuntos
Giro Denteado , Hipocampo , Animais , Humanos , Rememoração Mental , Aprendizagem , Mamíferos
11.
bioRxiv ; 2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-36778486

RESUMO

Memories involving the hippocampus can take several days to consolidate, challenging efforts to uncover the neuronal signatures underlying this process. Using calcium imaging in freely moving mice, we tracked the hippocampal dynamics underlying memory formation across a ten-day contextual fear conditioning (CFC) task. We found that cell turnover between the conditioning chamber and a neutral arena even prior to learning predicted the accuracy of subsequent memory recall the next day. Following learning, context-specific place field remapping correlated with memory performance. To causally test whether these hippocampal dynamics support memory consolidation, we induced amnesia in a group of mice by pharmacologically blocking protein synthesis immediately following learning. We found that halting protein synthesis following learning paradoxically accelerated cell turnover and also arrested learning-related remapping, paralleling the absence of remapping observed in untreated mice that exhibited poor memory expression. Finally, coordinated neural activity that emerged following learning was dependent on intact protein synthesis and predicted memory-related freezing behavior. We conclude that context-specific place field remapping and the development of coordinated ensemble activity require protein synthesis and underlie contextual fear memory consolidation.

12.
Neurobiol Learn Mem ; 200: 107738, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36822466

RESUMO

The dentate gyrus (DG) of hippocampus is hypothesized to act as a pattern separator that distinguishes between similar input patterns during memory formation and retrieval. Sparse ensembles of DG cells associated with learning and memory, i.e. engrams, have been labeled and manipulated to recall novel context memories. Functional studies of DG cell activity have demonstrated the spatial specificity and stability of DG cells during navigation. To reconcile how the DG contributes to separating global context as well as individual navigational routes, we trained mice to perform a delayed-non-match-to-position (DNMP) T-maze task and labeled DG neurons during performance of this task on a novel T-maze. The following day, mice navigated a second environment: the same T-maze, the same T-maze with one route permanently blocked but still visible, or a novel open field. We found that the degree of engram reactivation across days differed based on the traversal of maze routes, such that mice traversing only one arm had higher ensemble overlap than chance but less overlap than mice running the full two-route task. Mice experiencing the open field had similar ensemble sizes to the other groups but only chance-level ensemble reactivation. Ensemble overlap differences could not be explained by behavioral variability across groups, nor did behavioral metrics correlate to degree of ensemble reactivation. Together, these results support the hypothesis that DG contributes to spatial navigation memory and that partially non-overlapping ensembles encode different routes within the context of an environment.


Assuntos
Hipocampo , Rememoração Mental , Camundongos , Animais , Hipocampo/fisiologia , Rememoração Mental/fisiologia , Memória Espacial/fisiologia , Neurônios/fisiologia , Giro Denteado/fisiologia
13.
Neurobiol Aging ; 125: 9-31, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36801699

RESUMO

Network dysfunction is implicated in numerous diseases and psychiatric disorders, and the hippocampus serves as a common origin for these abnormalities. To test the hypothesis that chronic modulation of neurons and astrocytes induces impairments in cognition, we activated the hM3D(Gq) pathway in CaMKII+ neurons or GFAP+ astrocytes within the ventral hippocampus across 3, 6, and 9 months. CaMKII-hM3Dq activation impaired fear extinction at 3 months and acquisition at 9 months. Both CaMKII-hM3Dq manipulation and aging had differential effects on anxiety and social interaction. GFAP-hM3Dq activation impacted fear memory at 6 and 9 months. GFAP-hM3Dq activation impacted anxiety in the open field only at the earliest time point. CaMKII-hM3Dq activation modified the number of microglia, while GFAP-hM3Dq activation impacted microglial morphological characteristics, but neither affected these measures in astrocytes. Overall, our study elucidates how distinct cell types can modify behavior through network dysfunction, while adding a more direct role for glia in modulating behavior.


Assuntos
Astrócitos , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina , Humanos , Astrócitos/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Extinção Psicológica , Medo , Neurônios/metabolismo , Hipocampo/metabolismo
14.
Neurobiol Aging ; 123: 92-97, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36652783

RESUMO

With the prevalence of age-related cognitive deficits on the rise, it is essential to identify cellular and circuit alterations that contribute to age-related memory impairment. Increased intrinsic neuronal excitability after learning is important for memory consolidation, and changes to this process could underlie memory impairment in old age. Some studies find age-related deficits in hippocampal neuronal excitability that correlate with memory impairment but others do not, possibly due to selective changes only in activated neural ensembles. Thus, we tagged CA1 neurons activated during learning and recorded their intrinsic excitability 5 hours or 7 days post-training. Adult mice exhibited increased neuronal excitability 5 hours after learning, specifically in ensemble (learning-activated) CA1 neurons. As expected, ensemble excitability returned to baseline 7 days post-training. In aged mice, there was no ensemble-specific excitability increase after learning, which was associated with impaired hippocampal memory performance. These results suggest that CA1 may be susceptible to age-related impairments in post-learning ensemble excitability and underscore the need to selectively measure ensemble-specific changes in the brain.


Assuntos
Aprendizagem , Neurônios , Camundongos , Animais , Neurônios/fisiologia , Aprendizagem/fisiologia , Hipocampo/fisiologia , Encéfalo , Transtornos da Memória
15.
Nat Biotechnol ; 41(5): 640-651, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36593405

RESUMO

Observing cellular physiological histories is key to understanding normal and disease-related processes. Here we describe expression recording islands-a fully genetically encoded approach that enables both continual digital recording of biological information within cells and subsequent high-throughput readout in fixed cells. The information is stored in growing intracellular protein chains made of self-assembling subunits, human-designed filament-forming proteins bearing different epitope tags that each correspond to a different cellular state or function (for example, gene expression downstream of neural activity or pharmacological exposure), allowing the physiological history to be read out along the ordered subunits of protein chains with conventional optical microscopy. We use expression recording islands to record gene expression timecourse downstream of specific pharmacological and physiological stimuli in cultured neurons and in living mouse brain, with a time resolution of a fraction of a day, over periods of days to weeks.


Assuntos
Microscopia , Neurônios , Camundongos , Animais , Humanos , Neurônios/fisiologia
16.
Curr Biol ; 33(2): 298-308.e5, 2023 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-36577400

RESUMO

It is well established that sleep deprivation after learning impairs hippocampal memory processes and can cause amnesia. It is unknown, however, whether sleep deprivation leads to the loss of information or merely the suboptimal storage of information that is difficult to retrieve. Here, we show that hippocampal object-location memories formed under sleep deprivation conditions can be successfully retrieved multiple days following training, using optogenetic dentate gyrus (DG) memory engram activation or treatment with the clinically approved phosphodiesterase 4 (PDE4) inhibitor roflumilast. Moreover, the combination of optogenetic DG memory engram activation and roflumilast treatment, 2 days following training and sleep deprivation, made the memory more persistently accessible for retrieval even several days later (i.e., without further optogenetic or pharmacological manipulation). Altogether, our studies in mice demonstrate that sleep deprivation does not necessarily cause memory loss but instead leads to the suboptimal storage of information that cannot be retrieved without drug treatment or optogenetic stimulation. Furthermore, our findings suggest that object-location memories, consolidated under sleep deprivation conditions and thought to be lost, can be made accessible again several days after the learning and sleep deprivation episode, using the clinically approved PDE4 inhibitor roflumilast.


Assuntos
Amnésia , Privação do Sono , Camundongos , Animais , Memória/fisiologia , Hipocampo
17.
Nat Commun ; 13(1): 4733, 2022 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-36096993

RESUMO

Memories are stored in the brain as cellular ensembles activated during learning and reactivated during retrieval. Using the Tet-tag system in mice, we label dorsal dentate gyrus neurons activated by positive, neutral or negative experiences with channelrhodopsin-2. Following fear-conditioning, these cells are artificially reactivated during fear memory recall. Optical stimulation of a competing positive memory is sufficient to update the memory during reconsolidation, thereby reducing conditioned fear acutely and enduringly. Moreover, mice demonstrate operant responding for reactivation of a positive memory, confirming its rewarding properties. These results show that interference from a rewarding experience can counteract negative affective states. While memory-updating, induced by memory reactivation, involves a relatively small set of neurons, we also find that activating a large population of randomly labeled dorsal dentate gyrus neurons is effective in promoting reconsolidation. Importantly, memory-updating is specific to the fear memory. These findings implicate the dorsal dentate gyrus as a potential therapeutic node for modulating memories to suppress fear.


Assuntos
Medo , Hipocampo , Animais , Medo/fisiologia , Hipocampo/fisiologia , Aprendizagem , Memória/fisiologia , Camundongos , Neurônios/fisiologia
18.
Commun Biol ; 5(1): 1009, 2022 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-36163262

RESUMO

The hippocampus is involved in processing a variety of mnemonic computations specifically the spatiotemporal components and emotional dimensions of contextual memory. Recent studies have demonstrated cellular heterogeneity along the hippocampal axis. The ventral hippocampus has been shown to be important in the processing of emotion and valence. Here, we combine transgenic and all-virus based activity-dependent tagging strategies to visualize multiple valence-specific engrams in the vHPC and demonstrate two partially segregated cell populations and projections that respond to appetitive and aversive experiences. Next, using RNA sequencing and DNA methylation sequencing approaches, we find that vHPC appetitive and aversive engram cells display different transcriptional programs and DNA methylation landscapes compared to a neutral engram population. Additionally, optogenetic manipulation of tagged cell bodies in vHPC is not sufficient to drive appetitive or aversive behavior in real-time place preference, stimulation of tagged vHPC terminals projecting to the amygdala and nucleus accumbens (NAc), but not the prefrontal cortex (PFC), showed the capacity drive preference and avoidance. These terminals also were able to change their capacity to drive behavior. We conclude that the vHPC contains genetically, cellularly, and behaviorally segregated populations of cells processing appetitive and aversive memory engrams.


Assuntos
Hipocampo , Memória , Tonsila do Cerebelo/fisiologia , Hipocampo/fisiologia , Memória/fisiologia , Optogenética , Córtex Pré-Frontal/fisiologia
19.
Hippocampus ; 32(10): 707-715, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35950345

RESUMO

The compounding symptomatology of alcohol use disorder (AUD) and co-occurring mental health disorders gives rise to interactions of maladaptive neurobiological processes, the etiology of which are elusive. Here, we devised an optogenetic strategy aimed at rescuing maladaptive fear processing in male c57BL/6 mice that underwent a chronic ethanol administration and forced abstinence paradigm. In the first experiment, we confirmed that fear acquisition and maladaptive contextual generalization was potentiated in ethanol-exposed mice during fear conditioning and exposure to a novel environment, respectively. In the second experiment, using an activity-dependent tet-tag system, we labeled the neural ensemble selectively activated by contextual fear conditioning in the dorsal hippocampus with an inhibitory opsin to attenuate behavioral dysfunctions resulting from ethanol exposure. We found that acute optogenetic perturbations during exposure to a novel environment suppressed maladaptive generalization in ethanol-exposed mice. These results provide further evidence for a crucial link between ethanol exposure and impaired fear memory processing by providing cellular and behavioral insights into the neural circuitry underlying AUD and maladaptive fear processing.


Assuntos
Etanol , Medo , Animais , Etanol/toxicidade , Hipocampo , Masculino , Transtornos da Memória , Camundongos , Camundongos Endogâmicos C57BL , Opsinas
20.
Neuropsychopharmacology ; 47(11): 1992-2001, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35941286

RESUMO

The formation and extinction of fear memories represent two forms of learning that each engage the hippocampus and amygdala. How cell populations in these areas contribute to fear relapse, however, remains unclear. Here, we demonstrate that, in male mice, cells active during fear conditioning in the dentate gyrus of hippocampus exhibit decreased activity during extinction and are re-engaged after contextual fear relapse. In vivo calcium imaging reveals that relapse drives population dynamics in the basolateral amygdala to revert to a network state similar to the state present during fear conditioning. Finally, we find that optogenetic inactivation of neuronal ensembles active during fear conditioning in either the hippocampus or amygdala is sufficient to disrupt fear expression after relapse, while optogenetic stimulation of these same ensembles after extinction is insufficient to artificially mimic fear relapse. These results suggest that fear relapse triggers a partial re-emergence of the original fear memory representation, providing new insight into the neural substrates of fear relapse.


Assuntos
Cálcio , Condicionamento Clássico , Tonsila do Cerebelo/diagnóstico por imagem , Tonsila do Cerebelo/fisiologia , Animais , Condicionamento Clássico/fisiologia , Extinção Psicológica/fisiologia , Medo/fisiologia , Hipocampo/fisiologia , Masculino , Camundongos , Recidiva
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...