Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Nutr ; 10: 1151670, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37497061

RESUMO

Introduction: Micronutrients perform a wide range of physiological functions essential for growth and development. However, most people still need to meet the estimated average requirement worldwide. Globally, 2 billion people suffer from micronutrient deficiency, most of which are co-occurring deficiencies in children under age five. Despite decades of research, animal models studying multiple micronutrient deficiencies within the early-life period are lacking, which hinders our complete understanding of the long-term health implications and may contribute to the inefficacy of some nutritional interventions. Evidence supporting the Developmental Origins of Health and Disease (DOHaD) theory demonstrates that early-life nutritional deficiencies carry life-long consequences mediated through various mechanisms such as abnormal metabolic programming, stunting, altered body composition, and the gut microbiome. However, this is largely unexplored in the multiple micronutrient deficient host. Methods: we developed a preclinical model to examine undernutrition's metabolic and functional impact on the host and gut microbiome early in life. Three-week-old weanling C57BL/6N male mice were fed a low-micronutrient diet deficient in zinc, folate, iron, vitamin A, and vitamin B12 or a control diet for 4-weeks. Results: Our results showed that early-life multiple micronutrient deficiencies induced stunting, altered body composition, impaired glucose and insulin tolerance, and altered the levels of other micronutrients not depleted in the diet within the host. In addition, functional metagenomics profiling and a carbohydrate fermentation assay showed an increased microbial preference for simple sugars rather than complex ones, suggestive of a less developed microbiome in the low-micronutrient-fed mice. Moreover, we found that a zinc-only deficient diet was not sufficient to induce these phenotypes, further supporting the importance of studying co-occurring deficiencies. Discussion: Together, these findings highlight a previously unappreciated role of early-life multiple micronutrient deficiencies in shaping the metabolic phenome of the host and gut microbiome through altered glucose energy metabolism, which may have implications for metabolic disease later in life in micronutrient-deficient survivors.

2.
Am J Physiol Regul Integr Comp Physiol ; 321(5): R802-R811, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34612088

RESUMO

Hospitalized preterm infants experience painful medical procedures. Oral sucrose is the nonpharmacological standard of care for minor procedural pain relief. Infants are treated with numerous doses of sucrose, raising concerns about potential long-term effects. The objective of this study was to determine the long-term effects of neonatal oral sucrose treatment on growth and liver metabolism in a mouse model. Neonatal female and male mice were randomly assigned to one of two oral treatments (n = 7-10 mice/group/sex): sterile water or sucrose. Pups were treated 10 times/day for the first 6 days of life with 0.2 mg/g body wt of respective treatments (24% solution; 1-4 µL/dose) to mimic what is given to preterm infants. Mice were weaned at age 3 wk onto a control diet and fed until age 16 wk. Sucrose-treated female and male mice gained less weight during the treatment period and were smaller at weaning than water-treated mice (P ≤ 0.05); no effect of sucrose treatment on body weight was observed at adulthood. However, adult sucrose-treated female mice had smaller tibias and lower serum insulin-like growth factor-1 than adult water-treated female mice (P ≤ 0.05); these effects were not observed in males. Lower liver S-adenosylmethionine, phosphocholine, and glycerophosphocholine were observed in adult sucrose-treated compared with water-treated female and male mice (P ≤ 0.05). Sucrose-treated female, but not male, mice had lower liver free choline and higher liver betaine compared with water-treated female mice (P < 0.01). Our findings suggest that repeated neonatal sucrose treatment has long-term sex-specific effects on growth and liver methionine and choline metabolism.


Assuntos
Analgésicos/toxicidade , Colina/metabolismo , Glucocorticoides/metabolismo , Fígado/efeitos dos fármacos , Sacarose/toxicidade , Tíbia/efeitos dos fármacos , Aumento de Peso/efeitos dos fármacos , Administração Oral , Fatores Etários , Analgésicos/administração & dosagem , Animais , Animais Recém-Nascidos , Betaína/metabolismo , Feminino , Glicerilfosforilcolina/metabolismo , Fator de Crescimento Insulin-Like I/metabolismo , Fígado/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Fosforilcolina/metabolismo , S-Adenosilmetionina/metabolismo , Fatores Sexuais , Sacarose/administração & dosagem , Tíbia/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...