Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Mar Biol ; 93: 23-115, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36435592

RESUMO

We review the current knowledge of the biodiversity of the ocean as well as the levels of decline and threat for species and habitats. The lack of understanding of the distribution of life in the ocean is identified as a significant barrier to restoring its biodiversity and health. We explore why the science of taxonomy has failed to deliver knowledge of what species are present in the ocean, how they are distributed and how they are responding to global and regional to local anthropogenic pressures. This failure prevents nations from meeting their international commitments to conserve marine biodiversity with the results that investment in taxonomy has declined in many countries. We explore a range of new technologies and approaches for discovery of marine species and their detection and monitoring. These include: imaging methods, molecular approaches, active and passive acoustics, the use of interconnected databases and citizen science. Whilst no one method is suitable for discovering or detecting all groups of organisms many are complementary and have been combined to give a more complete picture of biodiversity in marine ecosystems. We conclude that integrated approaches represent the best way forwards for accelerating species discovery, description and biodiversity assessment. Examples of integrated taxonomic approaches are identified from terrestrial ecosystems. Such integrated taxonomic approaches require the adoption of cybertaxonomy approaches and will be boosted by new autonomous sampling platforms and development of machine-speed exchange of digital information between databases.


Assuntos
Biodiversidade , Ecossistema
2.
Nat Commun ; 13(1): 6517, 2022 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-36316329

RESUMO

The Aurora hydrothermal system, Arctic Ocean, hosts active submarine venting within an extensive field of relict mineral deposits. Here we show the site is associated with a neovolcanic mound located within the Gakkel Ridge rift-valley floor, but deep-tow camera and sidescan surveys reveal the site to be ≥100 m across-unusually large for a volcanically hosted vent on a slow-spreading ridge and more comparable to tectonically hosted systems that require large time-integrated heat-fluxes to form. The hydrothermal plume emanating from Aurora exhibits much higher dissolved CH4/Mn values than typical basalt-hosted hydrothermal systems and, instead, closely resembles those of high-temperature ultramafic-influenced vents at slow-spreading ridges. We hypothesize that deep-penetrating fluid circulation may have sustained the prolonged venting evident at the Aurora hydrothermal field with a hydrothermal convection cell that can access ultramafic lithologies underlying anomalously thin ocean crust at this ultraslow spreading ridge setting. Our findings have implications for ultra-slow ridge cooling, global marine mineral distributions, and the diversity of geologic settings that can host abiotic organic synthesis - pertinent to the search for life beyond Earth.


Assuntos
Fontes Hidrotermais , Água do Mar , Geologia , Temperatura Alta , Regiões Árticas
3.
Nature ; 610(7932): 513-518, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36224387

RESUMO

As the United Nations develops a post-2020 global biodiversity framework for the Convention on Biological Diversity, attention is focusing on how new goals and targets for ecosystem conservation might serve its vision of 'living in harmony with nature'1,2. Advancing dual imperatives to conserve biodiversity and sustain ecosystem services requires reliable and resilient generalizations and predictions about ecosystem responses to environmental change and management3. Ecosystems vary in their biota4, service provision5 and relative exposure to risks6, yet there is no globally consistent classification of ecosystems that reflects functional responses to change and management. This hampers progress on developing conservation targets and sustainability goals. Here we present the International Union for Conservation of Nature (IUCN) Global Ecosystem Typology, a conceptually robust, scalable, spatially explicit approach for generalizations and predictions about functions, biota, risks and management remedies across the entire biosphere. The outcome of a major cross-disciplinary collaboration, this novel framework places all of Earth's ecosystems into a unifying theoretical context to guide the transformation of ecosystem policy and management from global to local scales. This new information infrastructure will support knowledge transfer for ecosystem-specific management and restoration, globally standardized ecosystem risk assessments, natural capital accounting and progress on the post-2020 global biodiversity framework.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Política Ambiental , Biodiversidade , Biota , Conservação dos Recursos Naturais/legislação & jurisprudência , Conservação dos Recursos Naturais/métodos , Política Ambiental/legislação & jurisprudência , Política Ambiental/tendências , Objetivos , Nações Unidas , Animais
4.
R Soc Open Sci ; 9(10): 220885, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36249326

RESUMO

Deep-sea hydrothermal vents host lush chemosynthetic communities, dominated by endemic fauna that cannot live in other ecosystems. Despite over 500 active vents found worldwide, the Arctic has remained a little-studied piece of vent biogeography. Though located as early as 2001, the faunal communities of the Aurora Vent Field on the ultra-slow spreading Gakkel Ridge remained unsampled until recently, owing to difficulties with sampling on complex topography below permanent ice. Here, we report an unusual cocculinid limpet abundant on inactive chimneys in Aurora (3883-3884 m depth), describing it as Cocculina aurora n. sp. using an integrative approach combining traditional dissection, electron microscopy, molecular phylogeny, and three-dimensional anatomical reconstruction. Gross anatomy of the new species was typical for Cocculina, but it has a unique radula with broad, multi-cuspid rachidian where the outermost lateral is reduced compared to typical cocculinids. A phylogenetic reconstruction using the mitochondrial COI gene also confirmed its placement in Cocculina. Only the second cocculinid found at vents following the description of the Antarctic Cocculina enigmadonta, this is currently the sole cocculinid restricted to vents. Our discovery adds to the evidence that Arctic vents host animal communities closely associated with wood falls and distinct from other parts of the world.

5.
Mar Pollut Bull ; 174: 113150, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34847414

RESUMO

Submarine tailing disposal (STD) in fjords from land-based mines is common practice in Norway and takes place in other regions worldwide. We synthesize the results of a multidisciplinary programme on environmental impacts of STDs in Norwegian fjords, providing new knowledge that can be applied to assess and mitigate impact of tailing disposal globally, both for submarine and deep-sea activities. Detailed geological seafloor mapping provided data on natural sedimentation to monitor depositional processes on the seafloor. Modelling and analytical techniques were used to assess the behaviour of tailing particles and process-chemicals in the environment, providing novel tools for monitoring. Toxicity tests showed biological impacts on test species due to particulate and chemical exposure. Hypersedimentation mesocosm and field experiments showed a varying response on the benthos, allowing to determine the transition zone in the STD impact area. Recolonisation studies indicate that full community recovery and normalisation of metal leakage rates may take several decades due to bioturbation and slow burial of sulfidic tailings. The results are synthesised to provide guidelines for the development of best available techniques for STDs.


Assuntos
Estuários , Metais , Meio Ambiente , Monitoramento Ambiental , Noruega
8.
Nat Ecol Evol ; 4(2): 181-192, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32015428

RESUMO

The deep sea (>200 m depth) encompasses >95% of the world's ocean volume and represents the largest and least explored biome on Earth (<0.0001% of ocean surface), yet is increasingly under threat from multiple direct and indirect anthropogenic pressures. Our ability to preserve both benthic and pelagic deep-sea ecosystems depends upon effective ecosystem-based management strategies and monitoring based on widely agreed deep-sea ecological variables. Here, we identify a set of deep-sea essential ecological variables among five scientific areas of the deep ocean: (1) biodiversity; (2) ecosystem functions; (3) impacts and risk assessment; (4) climate change, adaptation and evolution; and (5) ecosystem conservation. Conducting an expert elicitation (1,155 deep-sea scientists consulted and 112 respondents), our analysis indicates a wide consensus amongst deep-sea experts that monitoring should prioritize large organisms (that is, macro- and megafauna) living in deep waters and in benthic habitats, whereas monitoring of ecosystem functioning should focus on trophic structure and biomass production. Habitat degradation and recovery rates are identified as crucial features for monitoring deep-sea ecosystem health, while global climate change will likely shift bathymetric distributions and cause local extinction in deep-sea species. Finally, deep-sea conservation efforts should focus primarily on vulnerable marine ecosystems and habitat-forming species. Deep-sea observation efforts that prioritize these variables will help to support the implementation of effective management strategies on a global scale.


Assuntos
Biodiversidade , Ecossistema , Mudança Climática , Ecologia , Oceanos e Mares
9.
Mar Pollut Bull ; 149: 110560, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31542599

RESUMO

Disposal of mine tailings in marine shallow water ecosystems represents an environmental challenge, and the present paper reports results from a field study in Frænfjorden, Norway, which is subject to such disposal. Structural and functional responses of benthic infauna and epifauna were investigated along a gradient from heavy tailings deposition to reference conditions. The tailings clearly impacted the faunal composition, with lowered species number close to the outfall. Total abundance of infauna increased in the most impacted area due to dominance of opportunistic species, whereas the epifauna was reduced and represented by a few scattered specimens only. In the most impacted area functional responses included an increase in mobile carnivores/omnivores and species utilizing symbionts. Sessile and tube-living taxa, and deposit and suspension feeders decreased, probably due to smothering in combination with tailings-associated changes of the substrate. Functional diversity decreased for both infauna and epifauna, but less than the structural diversity.


Assuntos
Organismos Aquáticos/fisiologia , Ecossistema , Resíduos Industriais , Mineração , Poluentes Químicos da Água/toxicidade , Animais , Organismos Aquáticos/classificação , Organismos Aquáticos/crescimento & desenvolvimento , Organismos Aquáticos/isolamento & purificação , Monitoramento Ambiental , Estuários , Sedimentos Geológicos/química , Noruega
10.
Oecologia ; 187(1): 291-304, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29605871

RESUMO

Resource subsidies in the form of allochthonous primary production drive secondary production in many ecosystems, often sustaining diversity and overall productivity. Despite their importance in structuring marine communities, there is little understanding of how subsidies move through juxtaposed habitats and into recipient communities. We investigated the transport of detritus from kelp forests to a deep Arctic fjord (northern Norway). We quantified the seasonal abundance and size structure of kelp detritus in shallow subtidal (0‒12 m), deep subtidal (12‒85 m), and deep fjord (400‒450 m) habitats using a combination of camera surveys, dive observations, and detritus collections over 1 year. Detritus formed dense accumulations in habitats adjacent to kelp forests, and the timing of depositions coincided with the discrete loss of whole kelp blades during spring. We tracked these blades through the deep subtidal and into the deep fjord, and showed they act as a short-term resource pulse transported over several weeks. In deep subtidal regions, detritus consisted mostly of fragments and its depth distribution was similar across seasons (50% of total observations). Tagged pieces of detritus moved slowly out of kelp forests (displaced 4‒50 m (mean 11.8 m ± 8.5 SD) in 11‒17 days, based on minimum estimates from recovered pieces), and most (75%) variability in the rate of export was related to wave exposure and substrate. Tight resource coupling between kelp forests and deep fjords indicate that changes in kelp abundance would propagate through to deep fjord ecosystems, with likely consequences for the ecosystem functioning and services they provide.


Assuntos
Kelp , Ecossistema , Estuários , Florestas , Noruega
11.
Sci Rep ; 6: 23800, 2016 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-27025314

RESUMO

A test deployment of a time-lapse camera lander in the deep Oslofjord (431 m) was used to obtain initial information on the response of benthic fauna to macroalgal debris. Three macroalgal species were used on the lander baited plate: Fucus serratus, Saccharina latissima and Laminaria hyperborea and observed during 41.5 hours. The deep-water shrimp Pandalus borealis were attracted to the macroalgae rapidly (3 min after the lander reached the seafloor), followed by amphipods. Shrimp abundances were significantly higher in areas covered by macroalgae compared to the adjacent seafloor and the number of shrimp visiting the macroalgae increased with time. Amphipods arrived 13 hours later and were observed mainly on decaying L. hyperborea. The abundance of amphipods on L. hyperborea increased rapidly, reaching a peak at 31 h after deployment. These initial observations suggest that debris from kelp forests and other macroalgal beds may play an important role in fuelling deep benthic communities in the outer Oslofjord and, potentially, enhance secondary production of commercial species such as P. borealis.


Assuntos
Anfípodes/fisiologia , Kelp , Pandalidae/fisiologia , Distribuição Animal , Animais , Comportamento Alimentar , Noruega , Imagem com Lapso de Tempo
12.
Mar Pollut Bull ; 97(1-2): 13-35, 2015 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-26045197

RESUMO

The mining sector is growing in parallel with societal demands for minerals. One of the most important environmental issues and economic burdens of industrial mining on land is the safe storage of the vast amounts of waste produced. Traditionally, tailings have been stored in land dams, but the lack of land availability, potential risk of dam failure and topography in coastal areas in certain countries results in increasing disposal of tailings into marine systems. This review describes the different submarine tailing disposal methods used in the world in general and in Norway in particular, their impact on the environment (e.g. hyper-sedimentation, toxicity, processes related to changes in grain shape and size, turbidity), current legislation and need for future research. Understanding these impacts on the habitat and biota is essential to assess potential ecosystem changes and to develop best available techniques and robust management plans.


Assuntos
Resíduos Industriais , Mineração/métodos , Instalações de Eliminação de Resíduos , Gerenciamento de Resíduos/métodos , Ecossistema , Meio Ambiente , Noruega , Água do Mar , Gerenciamento de Resíduos/legislação & jurisprudência
14.
PLoS One ; 9(4): e95839, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24788771

RESUMO

Anthropogenic litter is present in all marine habitats, from beaches to the most remote points in the oceans. On the seafloor, marine litter, particularly plastic, can accumulate in high densities with deleterious consequences for its inhabitants. Yet, because of the high cost involved with sampling the seafloor, no large-scale assessment of distribution patterns was available to date. Here, we present data on litter distribution and density collected during 588 video and trawl surveys across 32 sites in European waters. We found litter to be present in the deepest areas and at locations as remote from land as the Charlie-Gibbs Fracture Zone across the Mid-Atlantic Ridge. The highest litter density occurs in submarine canyons, whilst the lowest density can be found on continental shelves and on ocean ridges. Plastic was the most prevalent litter item found on the seafloor. Litter from fishing activities (derelict fishing lines and nets) was particularly common on seamounts, banks, mounds and ocean ridges. Our results highlight the extent of the problem and the need for action to prevent increasing accumulation of litter in marine environments.


Assuntos
Água do Mar , Poluentes da Água , Europa (Continente)
15.
PLoS Biol ; 11(10): e1001682, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24143135

RESUMO

Ongoing greenhouse gas emissions can modify climate processes and induce shifts in ocean temperature, pH, oxygen concentration, and productivity, which in turn could alter biological and social systems. Here, we provide a synoptic global assessment of the simultaneous changes in future ocean biogeochemical variables over marine biota and their broader implications for people. We analyzed modern Earth System Models forced by greenhouse gas concentration pathways until 2100 and showed that the entire world's ocean surface will be simultaneously impacted by varying intensities of ocean warming, acidification, oxygen depletion, or shortfalls in productivity. In contrast, only a small fraction of the world's ocean surface, mostly in polar regions, will experience increased oxygenation and productivity, while almost nowhere will there be ocean cooling or pH elevation. We compiled the global distribution of 32 marine habitats and biodiversity hotspots and found that they would all experience simultaneous exposure to changes in multiple biogeochemical variables. This superposition highlights the high risk for synergistic ecosystem responses, the suite of physiological adaptations needed to cope with future climate change, and the potential for reorganization of global biodiversity patterns. If co-occurring biogeochemical changes influence the delivery of ocean goods and services, then they could also have a considerable effect on human welfare. Approximately 470 to 870 million of the poorest people in the world rely heavily on the ocean for food, jobs, and revenues and live in countries that will be most affected by simultaneous changes in ocean biogeochemistry. These results highlight the high risk of degradation of marine ecosystems and associated human hardship expected in a future following current trends in anthropogenic greenhouse gas emissions.


Assuntos
Ecossistema , Fenômenos Geológicos , Atividades Humanas , Oceanos e Mares , Biodiversidade , Planeta Terra , Humanos , Água do Mar , Fatores de Tempo
16.
PLoS One ; 8(5): e63796, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23691098

RESUMO

Most deep-sea benthic ecosystems are food limited and, in the majority of cases, are driven by the organic matter falling from the surface or advected downslope. Species may adapt to this scarceness by applying a wide variety of responses, such as feeding specialisation, niche width variation, and reduction in metabolic rates. The Mediterranean Sea hosts a gradient of food availability at the deep seafloor over its wide longitudinal transect. In the Mediterranean, broad regional studies on trophic habits are almost absent, and the response of deep-sea benthos to different trophic conditions is still speculative. Here, we show that both primary and secondary production processes taking place at surface layers are key drivers of deep-sea food web structuring. By employing an innovative statistical tool, we interpreted bulk-tissue δ(13)C and δ(15)N isotope ratios in benthic megafauna, and associated surface and mesopelagic components from the 3 basins of the Mediterranean Sea at 3 different depths (1200, 2000, and 3000 m). The trophic niche width and the amplitude of primary carbon sources were positively correlated with both primary and secondary surface production indicators. Moreover, mesopelagic organic matter utilization processes showed an intermediate position between surface and deep benthic components. These results shed light on the understanding of deep-sea ecosystems functioning and, at the same time, they demand further investigation.


Assuntos
Peixes/fisiologia , Cadeia Alimentar , Invertebrados/fisiologia , Modelos Biológicos , Plâncton/fisiologia , Análise de Variância , Animais , Isótopos de Carbono/metabolismo , Geografia , Biologia Marinha , Mar Mediterrâneo , Isótopos de Nitrogênio/metabolismo , Plâncton/química , Especificidade da Espécie
17.
PLoS Biol ; 10(1): e1001234, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22235194

RESUMO

Since the first discovery of deep-sea hydrothermal vents along the Galápagos Rift in 1977, numerous vent sites and endemic faunal assemblages have been found along mid-ocean ridges and back-arc basins at low to mid latitudes. These discoveries have suggested the existence of separate biogeographic provinces in the Atlantic and the North West Pacific, the existence of a province including the South West Pacific and Indian Ocean, and a separation of the North East Pacific, North East Pacific Rise, and South East Pacific Rise. The Southern Ocean is known to be a region of high deep-sea species diversity and centre of origin for the global deep-sea fauna. It has also been proposed as a gateway connecting hydrothermal vents in different oceans but is little explored because of extreme conditions. Since 2009 we have explored two segments of the East Scotia Ridge (ESR) in the Southern Ocean using a remotely operated vehicle. In each segment we located deep-sea hydrothermal vents hosting high-temperature black smokers up to 382.8°C and diffuse venting. The chemosynthetic ecosystems hosted by these vents are dominated by a new yeti crab (Kiwa n. sp.), stalked barnacles, limpets, peltospiroid gastropods, anemones, and a predatory sea star. Taxa abundant in vent ecosystems in other oceans, including polychaete worms (Siboglinidae), bathymodiolid mussels, and alvinocaridid shrimps, are absent from the ESR vents. These groups, except the Siboglinidae, possess planktotrophic larvae, rare in Antarctic marine invertebrates, suggesting that the environmental conditions of the Southern Ocean may act as a dispersal filter for vent taxa. Evidence from the distinctive fauna, the unique community structure, and multivariate analyses suggest that the Antarctic vent ecosystems represent a new vent biogeographic province. However, multivariate analyses of species present at the ESR and at other deep-sea hydrothermal vents globally indicate that vent biogeography is more complex than previously recognised.


Assuntos
Biodiversidade , Ecossistema , Fontes Hidrotermais , Água do Mar/química , Animais , Regiões Antárticas , Bactérias/classificação , Bactérias/genética , Bactérias/crescimento & desenvolvimento , Crustáceos/classificação , Crustáceos/genética , Crustáceos/crescimento & desenvolvimento , Decápodes/classificação , Decápodes/genética , Decápodes/crescimento & desenvolvimento , Complexo IV da Cadeia de Transporte de Elétrons/genética , Gastrópodes/classificação , Gastrópodes/genética , Gastrópodes/crescimento & desenvolvimento , Geografia , Sulfeto de Hidrogênio/metabolismo , Concentração de Íons de Hidrogênio , Dados de Sequência Molecular , Oceanos e Mares , Filogenia , RNA Ribossômico 16S/genética , RNA Ribossômico 18S/genética , RNA Ribossômico 28S/genética , Água do Mar/microbiologia , Análise de Sequência de DNA , Sódio/metabolismo , Especificidade da Espécie , Temperatura
18.
PLoS One ; 6(8): e22588, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21829635

RESUMO

The deep sea, the largest ecosystem on Earth and one of the least studied, harbours high biodiversity and provides a wealth of resources. Although humans have used the oceans for millennia, technological developments now allow exploitation of fisheries resources, hydrocarbons and minerals below 2000 m depth. The remoteness of the deep seafloor has promoted the disposal of residues and litter. Ocean acidification and climate change now bring a new dimension of global effects. Thus the challenges facing the deep sea are large and accelerating, providing a new imperative for the science community, industry and national and international organizations to work together to develop successful exploitation management and conservation of the deep-sea ecosystem. This paper provides scientific expert judgement and a semi-quantitative analysis of past, present and future impacts of human-related activities on global deep-sea habitats within three categories: disposal, exploitation and climate change. The analysis is the result of a Census of Marine Life--SYNDEEP workshop (September 2008). A detailed review of known impacts and their effects is provided. The analysis shows how, in recent decades, the most significant anthropogenic activities that affect the deep sea have evolved from mainly disposal (past) to exploitation (present). We predict that from now and into the future, increases in atmospheric CO(2) and facets and consequences of climate change will have the most impact on deep-sea habitats and their fauna. Synergies between different anthropogenic pressures and associated effects are discussed, indicating that most synergies are related to increased atmospheric CO(2) and climate change effects. We identify deep-sea ecosystems we believe are at higher risk from human impacts in the near future: benthic communities on sedimentary upper slopes, cold-water corals, canyon benthic communities and seamount pelagic and benthic communities. We finalise this review with a short discussion on protection and management methods.


Assuntos
Ecossistema , Animais , Biodiversidade , Humanos , Biologia Marinha , Oceanos e Mares
19.
PLoS One ; 6(8): e23259, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21829722

RESUMO

The ChEss project of the Census of Marine Life (2002-2010) helped foster internationally-coordinated studies worldwide focusing on exploration for, and characterization of new deep-sea chemosynthetic ecosystem sites. This work has advanced our understanding of the nature and factors controlling the biogeography and biodiversity of these ecosystems in four geographic locations: the Atlantic Equatorial Belt (AEB), the New Zealand region, the Arctic and Antarctic and the SE Pacific off Chile. In the AEB, major discoveries include hydrothermal seeps on the Costa Rica margin, deepest vents found on the Mid-Cayman Rise and the hottest vents found on the Southern Mid-Atlantic Ridge. It was also shown that the major fracture zones on the MAR do not create barriers for the dispersal but may act as trans-Atlantic conduits for larvae. In New Zealand, investigations of a newly found large cold-seep area suggest that this region may be a new biogeographic province. In the Arctic, the newly discovered sites on the Mohns Ridge (71 °N) showed extensive mats of sulfur-oxidisng bacteria, but only one gastropod potentially bears chemosynthetic symbionts, while cold seeps on the Haakon Mossby Mud Volcano (72 °N) are dominated by siboglinid worms. In the Antarctic region, the first hydrothermal vents south of the Polar Front were located and biological results indicate that they may represent a new biogeographic province. The recent exploration of the South Pacific region has provided evidence for a sediment hosted hydrothermal source near a methane-rich cold-seep area. Based on our 8 years of investigations of deep-water chemosynthetic ecosystems worldwide, we suggest highest priorities for future research: (i) continued exploration of the deep-ocean ridge-crest; (ii) increased focus on anthropogenic impacts; (iii) concerted effort to coordinate a major investigation of the deep South Pacific Ocean - the largest contiguous habitat for life within Earth's biosphere, but also the world's least investigated deep-ocean basin.


Assuntos
Ecossistema , Biologia Marinha , Água do Mar , Oceanos e Mares
20.
PLoS One ; 5(8): e11832, 2010 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-20689848

RESUMO

Deep-sea ecosystems represent the largest biome of the global biosphere, but knowledge of their biodiversity is still scant. The Mediterranean basin has been proposed as a hot spot of terrestrial and coastal marine biodiversity but has been supposed to be impoverished of deep-sea species richness. We summarized all available information on benthic biodiversity (Prokaryotes, Foraminifera, Meiofauna, Macrofauna, and Megafauna) in different deep-sea ecosystems of the Mediterranean Sea (200 to more than 4,000 m depth), including open slopes, deep basins, canyons, cold seeps, seamounts, deep-water corals and deep-hypersaline anoxic basins and analyzed overall longitudinal and bathymetric patterns. We show that in contrast to what was expected from the sharp decrease in organic carbon fluxes and reduced faunal abundance, the deep-sea biodiversity of both the eastern and the western basins of the Mediterranean Sea is similarly high. All of the biodiversity components, except Bacteria and Archaea, displayed a decreasing pattern with increasing water depth, but to a different extent for each component. Unlike patterns observed for faunal abundance, highest negative values of the slopes of the biodiversity patterns were observed for Meiofauna, followed by Macrofauna and Megafauna. Comparison of the biodiversity associated with open slopes, deep basins, canyons, and deep-water corals showed that the deep basins were the least diverse. Rarefaction curves allowed us to estimate the expected number of species for each benthic component in different bathymetric ranges. A large fraction of exclusive species was associated with each specific habitat or ecosystem. Thus, each deep-sea ecosystem contributes significantly to overall biodiversity. From theoretical extrapolations we estimate that the overall deep-sea Mediterranean biodiversity (excluding prokaryotes) reaches approximately 2805 species of which about 66% is still undiscovered. Among the biotic components investigated (Prokaryotes excluded), most of the unknown species are within the phylum Nematoda, followed by Foraminifera, but an important fraction of macrofaunal and megafaunal species also remains unknown. Data reported here provide new insights into the patterns of biodiversity in the deep-sea Mediterranean and new clues for future investigations aimed at identifying the factors controlling and threatening deep-sea biodiversity.


Assuntos
Biodiversidade , Animais , Classificação , Mar Mediterrâneo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...