Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Anim Sci ; 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39028632

RESUMO

Our study objectives were to evaluate the effects of divergent rates of body weight (BW) gain during early gestation in beef heifers on F0 performance, metabolic and endocrine status, colostrum immunoglobulins, and subsequent F1 calf characteristics, growth performance, concentrations of hormones and metabolites, and response to vaccination. Angus-based heifers (n = 100; BW = 369 ± 2.5 kg) were adapted to individual feeding for 14 d and bred using artificial insemination with female-sexed semen. Heifers were ranked by BW assigned to either a basal diet targeting 0.28 kg/d gain (LG, n = 50) or the basal diet plus an energy/protein supplement targeting 0.79 kg/d gain (MG, n = 50) until d 84 of gestation. Dam BW and blood samples were collected at 6 time points during gestation; body composition was evaluated at d -10 and 84; and fetal measurements were taken on d 42, 63, and 84. At calving (LG, n = 23; MG, n = 23), dam and calf BW were recorded; and colostrum, calf body measurements, and blood samples were collected. Cow-calf pairs were managed on a common diet from calving to weaning, followed by a common postnatal development period for all F1 female offspring. Growth performance, hormone and metabolite profiles, feeding behavior, and reproductive performance were assessed from birth to pre-breeding in F1 heifers. Offspring were vaccinated against respiratory disease and bovine viral diarrhea pathogens on d 62.3 ± 4.13 and 220.3 ± 4.13 post-calving. By design, MG dams were heavier (P < 0.0001) than LG at d 84, and the BW advantage persisted until subsequent weaning of F1 calves. Concentrations of serum IGF-1 and glucose were increased throughout gestation (P < 0.001) for MG dams, whereas concentrations of NEFA were decreased (P < 0.001) in LG dams. Calves from MG dams were 2.14 kg heavier (P = 0.03) and had larger chest circumference (P = 0.04) at birth compared with LG cohorts. Heifers from MG dams continued to have greater (P ≤ 0.03) BW gain and feed efficiency during the development period, but no differences were observed (P ≥ 0.13) in body composition, concentrations of hormones and metabolites, feeding behavior, puberty attainment, and response to vaccination in F1 offspring. Hence, early gestation rate of gain impacted BW and concentrations of glucose and IGF-1 throughout gestation in the F0 dam, resulting in altered F1 calf BW and measurements at birth and increased gain and efficiency during the development period.

2.
Artigo em Inglês | MEDLINE | ID: mdl-38922982

RESUMO

This study aimed to assess the impact of protein supplementation and its interaction with calf sex (CS) on the performance, metabolism and physiology of pregnant beef cows. Fifty-two multiparous Zebu beef cows carrying female (n = 22) and male (n = 30) fetuses were used. Cows were individually housed from day 100 to 200 of gestation and randomly assigned to restricted (RES, n = 26) or supplemented (SUP, n = 26) groups. The RES cows were ad libitum fed a basal diet (corn silage + sugarcane bagasse + mineral mixture), achieving 5.5% crude protein (CP), while SUP cows received the same basal diet plus a protein supplement (40% CP, at 3.5 g/kg of body weight). All cows were fed the same diet during late gestation. Differences were declared at p < 0.05. No significant interaction between maternal nutrition and calf sex was found for maternal outcomes (p ≥ 0.34). The SUP treatment increased the total dry matter (DM) intake (p ≤ 0.01) by 32% and 19% at mid- and late-gestation respectively. The total tract digestibility of all diet components was improved by SUP treatment at day 200 of gestation (p ≤ 0.02), as well as the ruminal microbial CP production (p ≤ 0.01). The SUP treatment increased (p ≤ 0.03) the cows' body score condition, ribeye area, the average daily gain (ADG) of pregnant components (PREG; i.e., weight accretion of cows caused by pregnancy) and the ADG of maternal tissues (i.e., weight accretion discounting the gain related to gestation) in the mid-gestation. The SUP cows exhibited a lower maternal ADG (p < 0.01) compared to RES cows in late pregnancy. There was a 24% additional gain (p < 0.01) in the PREG components for SUP cows during late gestation, which in turn improved the calf birthweight (p = 0.05). The uterine arterial resistance and pulsatility indexes (p ≤ 0.01) at mid-gestation were greater for RES cows. In conclusion, protein supplementation during mid-gestation is an effective practice for improving maternal performance, growth of the gravid uterus and the offspring's birth weight.

3.
J Anim Sci ; 1022024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38437631

RESUMO

This study examined the impact of maternal protein supplementation during mid-gestation on offspring, considering potential sex-related effects. Forty-three pregnant purebred Tabapuã beef cows (20 female and 23 male fetuses) were collectively managed in a pasture until 100 d of gestation. From 100 to 200 d of gestation, they were randomly assigned to the restricted group [(RES) - basal diet (75% corn silage + 25% sugar cane bagasse + mineral mixture); n = 24] or control group [(CON) - same basal diet + based-plant supplement [40% of crude protein, 3.5 g/kg of body weight (BW); n = 19]. From 200 d of gestation until parturition, all cows were equally fed corn silage and mineral mixture. During the cow-calf phase, cows and their calves were maintained in a pasture area. After weaning, calves were individually housed and evaluated during the backgrounding (255 to 320 d), growing 1 (321 to 381 d), and growing 2 (382 to 445 d) phases. Offspring's blood samples were collected at 210 and 445 d of age. Samples of skeletal muscle tissue were collected through biopsies at 7, 30, and 445 d of age. Muscle tissue samples were subjected to reverse-transcription quantitative polymerase chain reaction analysis. Prenatal treatment and offspring's sex (when pertinent) were considered fixed effects. The significance level was set at 5%. At mid-gestation, cows supplemented with protein reached 98% and 92% of their protein and energy requirements, while nonsupplemented cows attained only 30% and 50% of these requirements, respectively. The RES offspring were lighter at birth (27 vs. 31 kg), weaning (197 vs. 214 kg), and 445 d of age (398 vs. 429 kg) (P ≤ 0.05). The CON calves had greater (P < 0.05) morphometric measurements overall. The CON offspring had ~26% greater muscle fiber area (P ≤ 0.01). There was a trend (P = 0.06) for a greater Mechanistic target of rapamycin kinase mRNA expression in the Longissimus thoracis in the CON group at 7 d of age. The Myogenic differentiation 1 expression was greater (P = 0.02) in RES-females. Upregulation of Carnitine palmitoyltransferase 2 was observed in RES offspring at 445 d (P = 0.04). Expression of Fatty acid binding protein 4 (P < 0.001), Peroxisome proliferator-activated receptor gamma (P < 0.001), and Stearoyl-Coenzyme A desaturase (P < 0.001) was upregulated in CON-females. Therefore, protein supplementation during gestation enhances offspring growth and promotes favorable responses to lipogenesis, particularly in females.


In tropical conditions, beef cows on pasture often experience protein restriction during mid-to-late gestation, potentially impacting offspring development negatively. To address this, we investigated the effects of strategic protein supplementation for pregnant beef cows fed low-quality forage during mid-gestation on the postnatal growth trajectory of their offspring. The supplementation program, implemented during mid-gestation, increased dry matter intake by addressing nitrogen deficiency in the rumen, resulting in meeting 98% and 92% of protein and energy requirements in supplemented cows. In contrast, nonsupplemented cows met only 30% and 50% of these requirements, respectively. Consequently, protein supplementation positively influenced the postnatal growth trajectory of the offspring, attributed to beneficial changes in secondary myogenesis and hypertrophy processes. Supplementing cows with crude protein also stimulated lipogenesis, potentially contributing to intramuscular fat deposition, particularly in females. Therefore, this study emphasizes the importance of nutritional interventions for pregnant beef cows fed low-quality forage.


Assuntos
Ração Animal , Suplementos Nutricionais , Animais , Bovinos , Feminino , Gravidez , Ração Animal/análise , Dieta/veterinária , Suplementos Nutricionais/análise , Minerais , Músculo Esquelético , Masculino
4.
J Therm Biol ; 114: 103562, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37344024

RESUMO

This research aimed to evaluate the impact of temperature and energy status on the thermal indices, physiological parameters, and ruminal papilla mRNA expression levels of Zebu beef heifers (Bos taurus indicus). In this trial, we used six ruminal-cannulated Nellore females. The experimental design was a 6 × 6 Latin square, with six treatments and six periods. The research used a 2 × 2 + 2 factorial scheme. The arrangement comprised: two thermal conditions [thermoneutrality (TN; 21.6 °C) or heat stress (HS, 34 °C)]; two dietary energy levels (low or high-energy); and two additional treatments, with heifers exposed to the TN, but pair-fed with females exposed to HS (PFTN). For our purposes, body temperature, heart and respiratory rates were measured and the relative mRNA expression was quantified using the PCR-RT technique. Compared to TN or PFTN, the HS increased the body temperature measurements in the morning and evening (p ≤ 0.04). Heart rate was 22% greater for heifers under HS than for TN (p < 0.01) and 13% higher for those under HS than PFTN (p = 0.03) in the morning. Respiratory rates increased with HS exposure compared to TN or PFTN (p < 0.01). Heifers submitted to HS and fed low-energy diets had and tended to have lower caspase 3 (CASP3, p 0.001) and sodium-glucose cotransporter type 1 (SGLT1; p = 0.17) mRNA expressions, respectively. Heat-stressed heifers fed low-energy diets also increased the putative anion transporter (PAT1; p ≤ 0.01) mRNA expressions by 60%. Heifers under HS-fed high-energy diets had greater kallikrein-related peptidase (KLK) 9 expressions (p = 0.02), while KLK10 (p = 0.11) tended to be up-regulated in heifers in TN-fed a low-energy diets. In conclusion, heat stress down-regulated the mRNA expression of rumen markers related to short-chain fatty acids transport and pH modulation.


Assuntos
Dieta , Temperatura Alta , Bovinos , Animais , Feminino , Dieta/veterinária , Resposta ao Choque Térmico , Epitélio , RNA Mensageiro , Ração Animal/análise , Rúmen/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA