Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 32(7): 11057-11064, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38570963

RESUMO

We report on Sb-based interband cascade lasers simultaneously grown on GaSb, GaAs and Si substrates. 8 µm x 2 mm devices exhibited similar threshold currents around 40 mA at 20°C and achieved continuous-wave (CW) operation up to 65°C on GaSb, GaAs and Si substrates despite a dislocation density of ∼ 4.108 cm-2 for both mismatched substrates. In the CW regime the output power of the devices emitting at 3.3 µm exceeded 30 mW/facet at 20°C. ICLs on GaAs and Si were subsequently aged at 50°C with an injection current of 200 mA, i.e. five times the laser-threshold current. No degradation was observed after 500 h of CW operation, demonstrating the high performance of ICLs and their tolerance to dislocations.

2.
Langmuir ; 38(46): 14140-14152, 2022 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-36350015

RESUMO

The design of hydrophobic surfaces requires a material which has a low solid surface tension and a simple fabrication process for anchoring and controlling the surface morphology. A generic method for the spontaneous formation of robust instability patterns is proposed through the hydrosilylation of a fluoroalkene bearing dangling chains, Rf = C6F13(CH2)3-, with a soft polymethylhydrosiloxane (PMHS) spin-coated gel polymer (0.8 µm thick) using Karstedt catalyst. These patterns were easily formed by an irreversible swelling reaction due to the attachment of a layer to various substrates. The buckling instability was created by two different approaches for a gel layer bound to a rigid silicon wafer substrate (A) and to a soft nonswelling silicone elastomer foundation (B). The observations of grafted Rf-PMHS films in the swollen state by microscopy revealed two distinct permanent patterns on various substrates: dotlike of wavelength λ = 0.4-0.7 µm (A) or wrinkle of wavelength λ = 4-7 µm (B). The elastic moduli ratios of film/substrate were determined using PeakForce quantitative nanomechanical mapping. The characteristic wavelengths (λ) of the patterns for systems A and B were quantitatively estimated in relation to the thickness of the top layer. A diversity of wrinkle morphologies can be achieved by grafting different side chains on pristine PMHS films. The water contact angle (WCA) hysteresis of fluorinated chain (Rf) was enhanced upon roughening the surfaces, giving highly hydrophobic surface properties for water with static/hysteresis WCAs of 136°/74° in the resulting wrinkle (B) and 119°/41° in the dotlike of lower roughness (A). The hydrophobic properties of grafted films on A with various mixtures of hexyl/fluoroalkyl chains were characterized by static CA: WCA 104-119°, ethylene glycol CA 80-96°, and n-hexadecane CA 17-61°. A very low surface energy of 15 mN/m for Rf-PMHS was found on the smoother dotlike pattern.

3.
ACS Nano ; 15(4): 7682-7693, 2021 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-33861069

RESUMO

The electrochemical reduction of CO2 in a highly selective and efficient manner is a crucial step toward its reuse for the production of chemicals and fuels. Nanostructured Ag catalysts have been found to be effective candidates for the conversion of CO2-to-CO. However, the ambiguous determination of the intrinsic CO2 activity and the maximization of the density of exposed active sites have greatly limited the use of Ag toward the realization of practical electrocatalytic devices. Here, we report a superstructure design strategy prepared by the self-assembly of two-dimensional Ag nanoprisms for maximizing the exposure of active edge ribs. The vertically stacked Ag nanoprisms allow the exposure of >95% of the edge sites, resulting in an enhanced selectivity and activity toward the production of CO from CO2 with an overpotential of 152 mV. The Ag superstructures also demonstrate a selectivity of over 90% for 100 h together with a current retention of ≈94% at -600 mV versus the reversible hydrogen electrode and a partial energy efficiency for CO production of 70.5%. Our electrochemical measurements on individual Ag nanoprisms with various edge-to-basal plane ratios and the Ag superstructures led to the identification of the edge ribs as the active sites thanks to the ≈400 mV decrease in the onset potential compared to that of the Ag (111) basal planes and a turnover frequency of 9.2 × 10-3 ± 1.9 × 10-3 s-1 at 0 V overpotential.

4.
Beilstein J Nanotechnol ; 9: 2999-3012, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30591848

RESUMO

The unusual properties of nanocomposites are commonly explained by the structure of their interphase. Therefore, these nanoscale interphase regions need to be precisely characterized; however, the existing high resolution experimental methods have not been reliably adapted to this purpose. Electrostatic force microscopy (EFM) represents a promising technique to fulfill this objective, although no complete and accurate interphase study has been published to date and EFM signal interpretation is not straightforward. The aim of this work was to establish accurate EFM signal analysis methods to investigate interphases in nanodielectrics using three experimental protocols. Samples with well-known, controllable properties were designed and synthesized to electrostatically model nanodielectrics with the aim of "calibrating" the EFM technique for future interphase studies. EFM was demonstrated to be able to discriminate between alumina and silicon dioxide interphase layers of 50 and 100 nm thickness deposited over polystyrene spheres and different types of matrix materials. Consistent permittivity values were also deduced by comparison of experimental data and numerical simulations, as well as the interface state of silicone dioxide layers.

5.
Int J Pharm ; 532(2): 790-801, 2017 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-28755992

RESUMO

Combined therapy is a global strategy developed to prevent drug resistance in cancer and infectious diseases. In this field, there is a need of multifunctional drug delivery systems able to co-encapsulate small drug molecules, peptides, proteins, associated to targeting functions, nanoparticles. Silylated hydrogels are alkoxysilane hybrid polymers that can be engaged in a sol-gel process, providing chemical cross linking in physiological conditions, and functionalized biocompatible hybrid materials. In the present work, microgels were prepared with silylated (hydroxypropyl)methyl cellulose (Si-HPMC) that was chemically cross linked in soft conditions of pH and temperature. They were prepared by an emulsion templating process, water in oil (W/O), as microreactors where the condensation reaction took place. The ability to functionalize the microgels, so-called FMGs, in a one-pot process, was evaluated by grafting a silylated hydrophilic model drug, fluorescein (Si-Fluor), using the same reaction of condensation. Biphasic microgels (BPMGs) were prepared to evaluate their potential to encapsulate lipophilic model drug (Nile red). They were composed of two separate compartments, one oily phase (sesame oil) trapped in the cross linked Si-HPMC hydrophilic phase. The FMGs and BPMGs were characterized by different microscopic techniques (optic, epi-fluorescence, Confocal Laser Scanning Microscopy and scanning electronic microscopy), the mechanical properties were monitored using nano indentation by Atomic Force Microscopy (AFM), and different preliminary tests were performed to evaluate their chemical and physical stability. Finally, it was demonstrated that it is possible to co-encapsulate both hydrophilic and hydrophobic drugs, in silylated microgels, that were physically and chemically stable. They were obtained by chemical cross linking in soft conditions, and without surfactant addition during the emulsification process. The amount of drug loaded was in favor of further biological activity. Mechanical stimulations should be necessary to trigger drug release.


Assuntos
Fluoresceína/química , Hidrogéis/química , Derivados da Hipromelose/química , Oxazinas/química , Propilaminas/química , Silanos/química , Sistemas de Liberação de Medicamentos , Liberação Controlada de Fármacos , Interações Hidrofóbicas e Hidrofílicas , Reologia , Óleo de Gergelim/química
6.
PLoS One ; 10(6): e0130552, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26115121

RESUMO

Using three different microscopy techniques (epifluorescence, electronic and atomic force microscopy), we showed that high-Mg calcite grains in calcifying microbial mats from the hypersaline lake "La Salada de Chiprana", Spain, contain viruses with a diameter of 50-80 nm. Energy-dispersive X-ray spectrometer analysis revealed that they contain nitrogen and phosphorus in a molar ratio of ~9, which is typical for viruses. Nucleic acid staining revealed that they contain DNA or RNA. As characteristic for hypersaline environments, the concentrations of free and attached viruses were high (>10(10) viruses per g of mat). In addition, we showed that acid treatment (dissolution of calcite) resulted in release of viruses into suspension and estimated that there were ~15 × 10(9) viruses per g of calcite. We suggest that virus-mineral interactions are one of the possible ways for the formation of nano-sized structures often described as "nanobacteria" and that viruses may play a role in initiating calcification.


Assuntos
Carbonato de Cálcio/química , Vírus/química , Salinidade , Espectrometria por Raios X
7.
PLoS One ; 8(4): e61663, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23593493

RESUMO

We present a study about AFM imaging of living, moving or self-immobilized bacteria in their genuine physiological liquid medium. No external immobilization protocol, neither chemical nor mechanical, was needed. For the first time, the native gliding movements of Gram-negative Nostoc cyanobacteria upon the surface, at speeds up to 900 µm/h, were studied by AFM. This was possible thanks to an improved combination of a gentle sample preparation process and an AFM procedure based on fast and complete force-distance curves made at every pixel, drastically reducing lateral forces. No limitation in spatial resolution or imaging rate was detected. Gram-positive and non-motile Rhodococcus wratislaviensis bacteria were studied as well. From the approach curves, Young modulus and turgor pressure were measured for both strains at different gliding speeds and are ranging from 20±3 to 105±5 MPa and 40±5 to 310±30 kPa depending on the bacterium and the gliding speed. For Nostoc, spatially limited zones with higher values of stiffness were observed. The related spatial period is much higher than the mean length of Nostoc nodules. This was explained by an inhomogeneous mechanical activation of nodules in the cyanobacterium. We also observed the presence of a soft extra cellular matrix (ECM) around the Nostoc bacterium. Both strains left a track of polymeric slime with variable thicknesses. For Rhodococcus, it is equal to few hundreds of nanometers, likely to promote its adhesion to the sample. While gliding, the Nostoc secretes a slime layer the thickness of which is in the nanometer range and increases with the gliding speed. This result reinforces the hypothesis of a propulsion mechanism based, for Nostoc cyanobacteria, on ejection of slime. These results open a large window on new studies of both dynamical phenomena of practical and fundamental interests such as the formation of biofilms and dynamic properties of bacteria in real physiological conditions.


Assuntos
Microscopia de Força Atômica/métodos , Nostoc/fisiologia , Rhodococcus/fisiologia , Fenômenos Biomecânicos , Movimento , Nostoc/ultraestrutura , Rhodococcus/ultraestrutura
8.
Nanoscale ; 4(6): 1964-7, 2012 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-22327337

RESUMO

A hydrogen sensor based on a novel fabrication process that combines the precision of advanced nano-fabrication techniques with a bottom-up process based on electrochemistry is presented. The sensor allows for reliable detection between 0.1% and 100% of H(2) in air. This fabrication is very versatile, highly reliable, and fully scalable for mass production, representing a very promising option for the fabrication of the next generation hydrogen sensors.


Assuntos
Condutometria/instrumentação , Hidrogênio/análise , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Paládio/química , Transdutores , Desenho de Equipamento , Análise de Falha de Equipamento , Hidrogênio/química , Tamanho da Partícula
9.
Electrophoresis ; 28(6): 925-31, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17309049

RESUMO

The control of the EOF direction and magnitude remains one of the more challenging issues for the optimization of separations in CE. In this work, we investigated the possibility to use variously charged polyanions for a fine-tuning of the EOF using polyelectrolyte multilayers. For that purpose, polyanions of poly(acrylamide-co-2-acrylamido-2-methyl-1-propanesulfonate) (PAMAMPS) with different chemical charge rates varying between 3 and 100% were used. These copolymers are statistic hydrophilic copolymers of acrylamide (AM) and 2-acrylamido-2-methyl-1-propanesulfonate (AMPS). The study of the influence of the chemical charge rate (AMPS molar proportion in the copolymer) on the electroosmotic mobility (mu(eo)) of a capillary modified by a polyelectrolyte bilayer (polycation/PAMAMPS) revealed that the fine-tuning of the EOF was possible, at least for cathodic or slightly anodic EOF (micro(eo) from -5 x 10(-5) to +35 x 10(-5) cm(2)V(-1)s(-1)). Electroosmotic mobility values were compared with the free-draining electrophoretic mobilities of the PAMAMPS constituting the last layer of the capillary coating. The stability of the EOF is discussed in detail on the basis of successive determinations of electroosmotic mobility and migration times. The application to the separation of a model peptide mixture demonstrated the interest (and the simplicity) of this approach for optimizing resolution and analysis time. Experimental resolutions were compared to the theoretical ones that we would obtain on a fused-silica capillary having the same EOF as the coated capillary.


Assuntos
Resinas Acrílicas/química , Alcanossulfonatos/química , Eletro-Osmose , Eletroforese Capilar/normas , Polímeros/química , Acrilamida/química , Acrilamidas/química , Eletrólitos/química , Polieletrólitos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...