Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Genes (Basel) ; 14(2)2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36833420

RESUMO

The genus Agave presents a bimodal karyotype with x = 30 (5L, large, +25S, small chromosomes). Bimodality within this genus is generally attributed to allopolyploidy in the ancestral form of Agavoideae. However, alternative mechanisms, such as the preferential accumulation of repetitive elements at the macrochromosomes, could also be important. Aiming to understand the role of repetitive DNA within the bimodal karyotype of Agave, genomic DNA from the commercial hybrid 11648 (2n = 2x = 60, 6.31 Gbp) was sequenced at low coverage, and the repetitive fraction was characterized. In silico analysis showed that ~67.6% of the genome is mainly composed of different LTR retrotransposon lineages and one satellite DNA family (AgSAT171). The satellite DNA localized at the centromeric regions of all chromosomes; however, stronger signals were observed for 20 of the macro- and microchromosomes. All transposable elements showed a dispersed distribution, but not uniform across the length of the chromosomes. Different distribution patterns were observed for different TE lineages, with larger accumulation at the macrochromosomes. The data indicate the differential accumulation of LTR retrotransposon lineages at the macrochromosomes, probably contributing to the bimodality. Nevertheless, the differential accumulation of the satDNA in one group of macro- and microchromosomes possibly reflects the hybrid origin of this Agave accession.


Assuntos
Agave , DNA Satélite , Agave/genética , Retroelementos , Cariótipo , Centrômero
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...