Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Res ; 219: 115000, 2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36529328

RESUMO

Toluene is a prevalent pollutant in indoor environments and its removal is essential to maintain a healthy environment. Adsorption is one of the best alternatives for organic vapours removal, specially at low indoor concentrations. Metal Organic Frameworks (MOFs) and Ionic Liquids (ILs) are potential materials for this mean. In this work, the synthesis and application of IL/MOF composite materials for toluene removal is reported. Loading [BMIM][CH3COO] ionic liquid into MIL101 porous structure improves parent materials affinity towards toluene capture by two orders of magnitude (as Henry's constants, attesting to their synergy). MIL101(Cr) and absorption in [BMIM][CH3COO] IL is best described by Henry's Law, while the Langmuir adsorption model predicts toluene adsorption on [BMIM][CH3COO]/MIL101(Cr) better than Freundlich and Toth equations. Diffusional and kinetics models revealed that toluene diffusion is the rate limiting step for pristine MIL101. Kinetic and diffusion rates were systematically improved upon the incorporation of the ionic liquid due to shorter toluene hops with the adsorbed IL and the increased hydrophobicity in the composites making the sorption more favourable. This study provides a systematic analysis and modelling of the toluene capture process in IL/MOF composites aiding a better understanding of the sorption process in these novel materials.


Assuntos
Poluentes Ambientais , Líquidos Iônicos , Estruturas Metalorgânicas , Tolueno/química , Líquidos Iônicos/química , Gases
2.
Pharmaceutics ; 14(11)2022 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-36432737

RESUMO

The use of nanomaterials for the controlled release of drugs aims to enhance their effectiveness, especially when poorly soluble in water, and achieve their rapid, localized, and effective administration. The present study focuses on the use of a Zeolitic Imidazolate Framework-8 (ZIF-8) as vehicle for the transport and controlled release of the antibiotic ciprofloxacin (CIP) as model due to its favorable physicochemical characteristics. The objective is to synthesize the ZIF-8 material loaded with CIP through encapsulation for subsequent release of the drug in neutral and acid physiological media. In addition, functionalization of the CIP/ZIF compound with magnetic nanoparticles (NP) was sought to increase its traceability through the possible use of magnetic fields. Characterizations by XRD, FT-IR, SEM-EDX, and TGA showed a satisfactory synthesis of both pure ZIF-8 and ciprofloxacin-loaded ZIF-8, with high crystallinity and thermal stability. The release profiles showed an abrupt initial release that stabilized over time. A much higher release (20-80% greater) was obtained in acid versus neutral pH in all cases, attributable to the collapse of the ZIF-8 structure in acid media. In addition, functionalization of the material with iron NPs did not affect the behavior of the system during drug release. Antimicrobial activity tests against E. coli and S. aureus showed that ZIF-8 per se exerts antimicrobial activity, while the compounds CIP/ZIF and magnetic CIP/ZIF increased the antimicrobial capacity of pure CIP by 10-20%. The ZIF-8 system has high potential as a drug carrier and release agent for the treatment of diseases, especially those that cause acidification of the cellular environment, achieving a rapid, localized, and targeted action with the possibility of achieving traceability of the system after its magnetic functionalization.

3.
Environ Res ; 215(Pt 3): 114341, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36179882

RESUMO

Indoor exposure to volatile organic compounds (VOCs) is detrimental to the health of the occupants, and their removal is crucial in maintaining good air quality. Novel adsorbents prepared by modifying Metal-Organic Frameworks (MOFs), MIL101 (Cr), UiO-66, and UiO-66-NH2 with [BMIM][CH3COO] ionic liquid, were characterized and tested for toluene adsorption. [BMIM][CH3COO]/MIL101 performed best with a fast sorption rate, large sorption capacity, and good regenerability. It displays synergistic interactions between the IL and MOF. Adding one weight percent [BMIM][CH3COO] to UiO-66 and UiO-66-NH2 has a synergistic effect with respective 14% and 5% enhancements sorption over calculated values. The strong interactions between IL and UiO-66 and UiO-66-NH2, as observed in their thermogravimetric data, results in poor toluene sorption for 10 wt% [BMIM][CH3COO] loadings. This work provides a basis for IL modification of MOFs for enhanced sorption of VOCs for air treatment.


Assuntos
Líquidos Iônicos , Estruturas Metalorgânicas , Compostos Orgânicos Voláteis , Adsorção , Ácidos Ftálicos , Tolueno
4.
Artigo em Inglês | MEDLINE | ID: mdl-34682714

RESUMO

The construction industry has a considerable environmental impact in societies, which must be controlled to achieve adequate sustainability levels. In particular, cement production contributes 5-8% of CO2 emissions worldwide, mainly from the utilization of clinker. This study applied Life Cycle Assessment (LCA) methodology to investigate the environmental impact of cement production and explore environmental improvements obtained by adding marble waste sludges in the manufacture of Portland cement. It was considered that 6-35% of the limestone required for its production could be supplied by marble waste sludge (mainly calcite), meeting the EN 197-1:2011 norm. Energy consumption and greenhouse gas (GHG) emission data were obtained from the Ecovent database using commercial LCA software. All life cycle impact assessment indicators were lower for the proposed "eco-cement" than for conventional cement, attributable to changes in the utilization of limestone and clinker. The most favorable results were achieved when marble waste sludge completely replaced limestone and was added to clinker at 35%. In comparison to conventional Portland cement production, this process reduced GHG emissions by 34%, the use of turbine waters by 60%, and the emission of particles into the atmosphere by 50%. Application of LCA methodology allowed evaluation of the environmental impact and improvements obtained with the production of a type of functional eco-cement. This approach is indispensable for evaluating the environmental benefits of using marble waste sludges in the production of cement.


Assuntos
Gases de Efeito Estufa , Esgotos , Animais , Carbonato de Cálcio , Materiais de Construção , Efeito Estufa , Estágios do Ciclo de Vida
5.
Nanomaterials (Basel) ; 11(9)2021 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-34578621

RESUMO

This study evaluated the waste generated by a Spanish marble-producing company as adsorbent for the removal of copper (Cu [II]) from aqueous media. Six marble waste sludge samples were studied, and the following operational parameters were analyzed in discontinuous regime, including pollutant concentration, pH, temperature, nature of aqueous medium, and ionic strength. The applicability of the adsorbent material was assessed with experiments in both continuous and discontinuous regimes under close-to-real-life conditions. A pseudo-second order model yielded a better fit to the kinetic data. Application of the intraparticle diffusion model revealed two well-differentiated adsorption stages, in which the external material transfer is negligible and intraparticle diffusion is the controlling stage. The equilibrium study was better fitted to a Freundlich-type isotherm, predicting elevated maximum adsorption values (22.7 mg g-1) at a relatively low initial Cu (II) concentration (25 ppm), yielding a highly favorable chemisorption process (n >> 1). X-ray fluorescence study identified calcite (CaCO3) as the main component of marble waste sludges. According to X-ray diffraction analysis, Cu (II) ion adsorption occurred by intercalation of the metallic cation between CaCO3 layers and by the formation of surface complexes such as CaCO3 and Cu2(CO3)(OH)2. Cu (II) was more effectively removed at medium pH, lower temperature, and lower ionic strength of the aqueous medium. The salinity and dissolved organic matter in surface, ground-, and waste-waters negatively affected the Cu (II) removal process in both continuous and discontinuous regimes by competing for active adsorption sites. These findings demonstrate the applicability and effectiveness of marble-derived waste sludges as low-cost and readily available adsorbents for the treatment of waters polluted by Cu (II) under close-to-real-life conditions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...