Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Pharm Pharmacol ; 74(1): 13-21, 2022 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-34791376

RESUMO

OBJECTIVES: This study investigated the involvement of heme oxygenase-1 (HO-1) in the antidepressant-like effects of ursolic acid (UA), a plant-derived compound with neuroprotective and antidepressant-like properties. METHODS: Mice received intracerebroventricular injections of zinc protoporphyrin IX (ZnPP) or cobalt protoporphyrin IX (CoPP) to inhibit or induce HO-1, respectively, together with effective (0.1 mg/kg, p.o.) or sub-effective (0.01 mg/kg, p.o.) doses of UA or fluoxetine (10 mg/kg, p.o.). Immobility time was assessed using the tail suspension test (TST) and the ambulatory behaviour with the open field test. HO-1 immunocontent was evaluated in mice hippocampus and prefrontal cortex. KEY FINDINGS: ZnPP prevented the anti-immobility effects of UA and fluoxetine. Combined treatment with a sub-effective dose of CoPP and UA synergistically exerted antidepressant-like effects in the TST. Acute administration of UA or CoPP, but not fluoxetine, increased the HO-1 immunocontent in the hippocampus. None of the treatments altered the HO-1 immunocontent in the prefrontal cortex. CONCLUSIONS: In conclusion, this work shows that increased hippocampal HO-1 content and activity mediate the antidepressant-like effect of UA in the TST.


Assuntos
Heme Oxigenase-1/metabolismo , Hipocampo/efeitos dos fármacos , Triterpenos/farmacologia , Animais , Antidepressivos/farmacologia , Comportamento Animal/efeitos dos fármacos , Monitoramento de Medicamentos/métodos , Fluoxetina/farmacologia , Hipocampo/metabolismo , Camundongos , Fármacos Neuroprotetores/farmacologia , Preparações de Plantas/farmacologia , Resultado do Tratamento , Ácido Ursólico
2.
Stress ; 24(1): 96-106, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32319840

RESUMO

Distresses may induce behavioral phenotypes constituting heuristic models for psychopharmacology studies. In several species, including Drosophila, antidepressants counteract stress-induced phenotypes allowing the use of these models to test new psychoactive drugs. Here, we developed a novel and time-efficient protocol to provoke stress-induced phenotypes in Drosophila for the study of psychopharmacological agents. In the first experiment, flies (n = 12/groups) were exposed to a random-sequence of different types of stresses during nearly 24 h (including social isolation, fasting, heat, and electric shock), a protocol named short-term variable stress (SVS). Second, flies were exposed to a single stressful stimulus (social isolation, fasting, heat shock or electric shock, n = 12/groups). Next, flies submitted to SVS protocol were treated with vehicle, diazepam or fluoxetine (n = 12/groups). At the end of the stress protocols, behavioral phenotypes were evaluated in the open field (OF) and sucrose preference tests. In comparison to the unstressed group, flies exposed to SVS exhibited hyperactivity, as well as shorter times exploring the boundaries of the OF. In contrast to fasting stress, SVS reduced sucrose preference in flies. By analyzing the effects of individual stimuli on fly behavior, fasting and electric shock appear to be the predominant influences on the SVS-induced behaviors. Although fluoxetine or diazepam reduced the initial locomotor activity of flies, no treatment prevented the sequelae of SVS. Altogether, this study provides a time-efficient model system for the study of stress-mediated hyperactivity and anhedonia-like state resistant to fluoxetine and diazepam. The applications of SVS in Drosophila to preclinical psychopharmacology require further studies. LAY SUMMARY Exposition to unpredictable stress plays a significant role in psychiatric disorder's onset. Behavioral traits of these disorders can be partially modeled in rodents aimed at developing psychopharmacological therapies. However, studies in rodents were questioned by ethical issues. Focused on 3Rs principles, we developed a preclinical model for stress and psychopharmacology research in Drosophila. Variable stress induced behavioral alterations, including hyperlocomotion and reduced preference for sucrose in flies. However, behavioral alterations were resistant to fluoxetine and diazepam.


Assuntos
Anedonia , Fluoxetina , Animais , Diazepam/farmacologia , Modelos Animais de Doenças , Drosophila , Fluoxetina/farmacologia , Estresse Psicológico
3.
J Neurochem ; 153(1): 10-32, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31630412

RESUMO

Perception of our environment entirely depends on the close interaction between the central and peripheral nervous system. In order to communicate each other, both systems must develop in parallel and in coordination. During development, axonal projections from the CNS as well as the PNS must extend over large distances to reach their appropriate target cells. To do so, they read and follow a series of axon guidance molecules. Interestingly, while these molecules play critical roles in guiding developing axons, they have also been shown to be critical in other major neurodevelopmental processes, such as the migration of cortical progenitors. Currently, a major hurdle for brain repair after injury or neurodegeneration is the absence of axonal regeneration in the mammalian CNS. By contrasts, PNS axons can regenerate. Many hypotheses have been put forward to explain this paradox but recent studies suggest that hacking neurodevelopmental mechanisms may be the key to promote CNS regeneration. Here we provide a seminar report written by trainees attending the second Flagship school held in Alpbach, Austria in September 2018 organized by the International Society for Neurochemistry (ISN) together with the Journal of Neurochemistry (JCN). This advanced school has brought together leaders in the fields of neurodevelopment and regeneration in order to discuss major keystones and future challenges in these respective fields.


Assuntos
Orientação de Axônios/fisiologia , Axônios/fisiologia , Encéfalo/ultraestrutura , Animais , Axônios/ultraestrutura , Encéfalo/crescimento & desenvolvimento , Encéfalo/fisiologia , Humanos , Regeneração Nervosa , Quiasma Óptico/crescimento & desenvolvimento , Sistema Nervoso Periférico/crescimento & desenvolvimento , Sistema Nervoso Periférico/fisiologia , Medula Espinal/crescimento & desenvolvimento , Medula Espinal/fisiologia , Medula Espinal/ultraestrutura
4.
Neurochem Int ; 95: 4-14, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26804444

RESUMO

Creatine has been reported to exert beneficial effects in several neurodegenerative diseases in which glutamatergic excitotoxicity and oxidative stress play an etiological role. The purpose of this study was to investigate the protective effects of creatine, as compared to the N-Methyl-d-Aspartate (NMDA) receptor antagonist dizocilpine (MK-801), against glutamate or hydrogen peroxide (H2O2)-induced injury in human neuroblastoma SH-SY5Y cells. Exposure of cells to glutamate (60-80 mM) or H2O2 (200-300 µM) for 24 h decreased cellular viability and increased dichlorofluorescein (DCF) fluorescence (indicative of increased reactive oxygen species, ROS) and nitric oxide (NO) production (assessed by mono-nitrogen oxides, NOx, levels). Creatine (1-10 mM) or MK-801 (0.1-10 µM) reduced glutamate- and H2O2-induced toxicity. The protective effect of creatine against glutamate-induced toxicity involves its antioxidant effect, since creatine, similar to MK-801, prevented the increase on DCF fluorescence induced by glutamate or H2O2. Furthermore, creatine or MK-801 blocked glutamate- and H2O2-induced increases in NOx levels. In another set of experiments, the repeated, but not acute, administration of creatine (300 mg/kg, po) in mice prevented the decreases on cellular viability and mitochondrial membrane potential (assessed by tetramethylrhodamine ethyl ester, TMRE, probe) of hippocampal slices incubated with glutamate (10 mM). Creatine concentration-dependent decreased the amount of nitrite formed in the reaction of oxygen with NO produced from sodium nitroprusside solution, suggesting that its protective effect against glutamate or H2O2-induced toxicity might be due to its scavenger activity. Overall, the results suggest that creatine may be useful as adjuvant therapy for neurodegenerative disease treatments.


Assuntos
Creatina/farmacologia , Ácido Glutâmico/toxicidade , Hipocampo/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Animais , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Feminino , Hipocampo/metabolismo , Humanos , Camundongos , Nitrosação/efeitos dos fármacos , Nitrosação/fisiologia , Técnicas de Cultura de Órgãos , Estresse Oxidativo/fisiologia , Espécies Reativas de Oxigênio/antagonistas & inibidores , Espécies Reativas de Oxigênio/metabolismo
5.
World J Microbiol Biotechnol ; 30(8): 2251-62, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24682954

RESUMO

Nine aromatic compounds (caffeic acid, syringaldehyde, vanillic acid, guaiacol, vanillin, sinapic acid, syringol, syringic acid and ferulic acid) and four metallic compounds (CuSO4, AgNO3, MnSO4, and CaCl2) were tested for their ability to increase laccase (Lac) activity in the ligninolytic basidiomycete Phlebia brevispora BAFC 633. The addition of syringaldehyde, syringol, guaiacol, sinapic acid, vanillin, ferulic acid and CuSO4 showed a positive effect on fungal growth; however, it decreased dramatically with the addition of AgNO3 and did not undergo changes in the presence of CaCl2 or MnSO4. Lac activity increased with the addition of all the compounds tested, depending on the concentration and the day of culture. P. brevispora BAFC 633 produced two isoenzymes, a constitutively expressed of 60 kDa and another of 75 kDa expressed upon induction by sinapic acid, MnSO4 or CuSO4. Lac secretion capacity of P. brevispora BAFC 633 can be increased 27 times higher than the control with the highest levels detected in the presence of 0.3 mM CuSO4 at day 14. The action is affected at pre-transcriptional level regulating at the onset of the process, however it does not rule out the effect at the post-transcriptional and post-translational levels, for which is necessary to deepen in the knowledge of all possible regulation points of gene expression.


Assuntos
Basidiomycota/efeitos dos fármacos , Compostos Inorgânicos/farmacologia , Lacase/metabolismo , Compostos Orgânicos/farmacologia , RNA Mensageiro/metabolismo , Basidiomycota/classificação , Biomassa , Aromatizantes/farmacologia , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Isoenzimas/metabolismo , RNA Fúngico/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...