Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Nano Mater ; 4(3): 3122-3139, 2021 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-34027313

RESUMO

BACKGROUND: fluorescent nanodiamonds (FND) are nontoxic, infinitely photostable nanoparticles that emit near-infrared fluorescence and have a modifiable surface allowing for the generation of protein-FND conjugates. FND-mediated immune cell targeting may serve as a strategy to visualize immune cells and promote immune cell activation. METHODS: uncoated-FND (uFND) were fabricated, coated with glycidol (gFND), and conjugated with immunoglobulin G (IgG-gFND). In vitro studies were performed using a breast cancer/natural killer/monocyte co-culture system, and in vivo studies were performed using a breast cancer mouse model. RESULTS: in vitro studies demonstrated the targeted immune cell uptake of IgG-gFND, resulting in significant immune cell activation and no compromise in immune cell viability. IgG-gFND remained at the tumor site following intratumoral injection compared to uFND which migrated to the liver and kidneys. CONCLUSION: antibody-conjugated FND may serve as immune drug delivery vehicles with "track and trace capabilities" to promote directed antitumor activity and minimize systemic toxicities.

2.
Opt Lett ; 43(14): 3317-3320, 2018 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-30004495

RESUMO

Fluorescent nanodiamonds (FNDs) have attracted recent interest for biological applications owing to their biocompatibility and photostability (absence of photoblinking and bleaching). For optical thermometry, nitrogen-vacancy (NV) color centers and silicon-vacancy color centers in diamonds have demonstrated potential, where the NV has the highest sensitivity. However, NV is often excited with green light, which can cause heating and photodamage to tissues, as well as autofluorescence that decreases sensitivity. To overcome these limitations, we report temperature sensing using NV centers excited by deep red light (660 nm), plus another color center that can be excited with NIR light; the nickel (Ni) complex. The NV center measures temperature using diamond lattice expansion while the Ni complex measures temperature using phonon sideband strength.


Assuntos
Técnicas Biossensoriais , Fluorescência , Nanodiamantes/química , Termometria/métodos , Níquel/química , Nitrogênio/química
3.
Biotechnol Bioeng ; 115(6): 1427-1436, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29460442

RESUMO

Rapid identification of specific bacterial strains within clinical, environmental, and food samples can facilitate the prevention and treatment of disease. Fluorescent nanodiamonds (FNDs) are being developed as biomarkers in biology and medicine, due to their excellent imaging properties, ability to accept surface modifications, and lack of toxicity. Bacteriophages, the viruses of bacteria, can have exquisite specificity for certain hosts. We propose to exploit the properties of FNDs and phages to develop phages conjugated with FNDs as long-lived fluorescent diagnostic reagents. In this study, we develop a simple procedure to create such fluorescent probes by functionalizing the FNDs and phages with streptavidin and biotin, respectively. We find that the FND-phage conjugates retain the favorable characteristics of the individual components and can discern their proper host within a mixture. This technology may be further explored using different phage/bacteria systems, different FND color centers and alternate chemical labeling schemes for additional means of bacterial identification and new single-cell/virus studies.


Assuntos
Bacteriófagos/química , Bacteriófagos/fisiologia , Corantes Fluorescentes/química , Especificidade de Hospedeiro , Nanodiamantes/química , Técnicas Bacteriológicas/métodos , Imagem Óptica/métodos
4.
Nanomedicine ; 13(3): 909-920, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-27993723

RESUMO

Fluorescent nanodiamonds (FNDs) are nontoxic, infinitely photostable, and emit fluorescence in the near infrared region. Natural killer (NK) cells and monocytes are part of the innate immune system and are crucial to the control of carcinogenesis. FND-mediated stimulation of these cells may serve as a strategy to enhance anti-tumor activity. FNDs were fabricated with a diameter of 70±28 nm. Innate immune cell FND uptake, viability, surface marker expression, and cytokine production were evaluated in vitro. Evaluation of fluorescence emission from the FNDs was conducted in an animal model. In vitro results demonstrated that treatment of immune cells with FNDs resulted in significant dose-dependent FND uptake, no compromise in cell viability, and immune cell activation. FNDs were visualized in an animal model. Hence, FNDs may serve as novel agents with "track and trace" capabilities to stimulate innate immune cell anti-tumor responses, especially as FNDs are amenable to surface-conjugation with immunomodulatory molecules.


Assuntos
Adjuvantes Imunológicos/uso terapêutico , Corantes Fluorescentes/uso terapêutico , Imunidade Celular/efeitos dos fármacos , Nanodiamantes/uso terapêutico , Adjuvantes Imunológicos/farmacocinética , Animais , Células Cultivadas , Corantes Fluorescentes/farmacocinética , Humanos , Imunidade Inata/efeitos dos fármacos , Imunoterapia , Células Matadoras Naturais/efeitos dos fármacos , Células Matadoras Naturais/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Monócitos/efeitos dos fármacos , Monócitos/imunologia , Nanodiamantes/análise , Neoplasias/imunologia , Neoplasias/terapia , Células RAW 264.7
5.
Biophys J ; 110(9): 2044-52, 2016 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-27166812

RESUMO

Electron paramagnetic resonance (EPR), an established and powerful methodology for studying atomic-scale biomolecular structure and dynamics, typically requires in excess of 10(12) labeled biomolecules. Single-molecule measurements provide improved insights into heterogeneous behaviors that can be masked in ensemble measurements and are often essential for illuminating the molecular mechanisms behind the function of a biomolecule. Here, we report EPR measurements of a single labeled biomolecule. We selectively label an individual double-stranded DNA molecule with a single nanodiamond containing nitrogen-vacancy centers, and optically detect the paramagnetic resonance of nitrogen-vacancy spins in the nanodiamond probe. Analysis of the spectrum reveals that the nanodiamond probe has complete rotational freedom and that the characteristic timescale for reorientation of the nanodiamond probe is slow compared with the transverse spin relaxation time. This demonstration of EPR spectroscopy of a single nanodiamond-labeled DNA provides the foundation for the development of single-molecule magnetic resonance studies of complex biomolecular systems.


Assuntos
DNA/química , Nanodiamantes/química , Espectroscopia de Ressonância de Spin Eletrônica , Modelos Moleculares , Conformação Molecular
6.
Diabetes Technol Ther ; 7(1): 151-62, 2005 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-15738713

RESUMO

OBJECTIVE: Immunoisolating membranes protect transplanted xenogeneic tissue by physically isolating them from the host. However, most are commercial filter membranes that do not possess all the features needed for immunoisolation. Silicon nanopore membranes are thin layers of silicon containing tens of thousands of nanometer-sized channels, which allow passive diffusion of small molecules. They are excellent size-selective barriers, and the objective of this study was to further characterize their immunoprotective properties and make comparisons with commercial filter membranes. METHODS: Diffusion across membranes was studied using molecules of different sizes, including fluorescein isothiocyanate-dextrans (relative molecular sizes of 4.4 kDa, 20 kDa, and 70 kDa), glucose (0.18 kDa), insulin (6.1 kDa), and immunoglobulin G (IgG) (150 kDa). Protection from complement-mediated lysis was analyzed by a hemolysis assay. Comparative studies were done with filter membranes that have been reported as immunoisolation barriers. To evaluate if silicon nanopore membranes changed insulin response patterns for glucose-stimulated islets, macrocapsules were constructed with nanopore membranes and filled with pancreatic islets, and dynamic perifusion studies were performed. RESULTS: Relative to commercial membranes, silicon nanopore membranes showed high rates of diffusion for glucose and insulin, and acted as efficient barriers to complement proteins and IgG. No other commercial membrane showed comparable diffusion and immunoisolating properties. Islets placed within the macrocapsule exhibited glucose-responsive insulin secretion in perifusion studies. CONCLUSIONS: Silicon nanopore membranes possess unique and desirable diffusion properties as immunoisolation membranes and allow rapid response times for the stimulation of islets by glucose. These features are attributed to the physical properties of the membranes, namely, the straight channels, adequate porosity, and the 5 microm thickness.


Assuntos
Fluoresceína-5-Isotiocianato/análogos & derivados , Membranas Artificiais , Silício , Animais , Dextranos/análise , Fluoresceína-5-Isotiocianato/análise , Glucose/análise , Glucose/farmacologia , Humanos , Imunoglobulina G/análise , Insulina/análise , Insulina/metabolismo , Secreção de Insulina , Peso Molecular , Ratos
7.
Adv Drug Deliv Rev ; 56(11): 1661-73, 2004 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-15350295

RESUMO

The inadequacy of conventional insulin therapy for the treatment of Type I diabetes has stimulated research on several therapeutic alternatives, including insulin pumps and controlled release systems for insulin. One of the most physiological alternatives to insulin injections is the transplantation of insulin-secreting cells. It is the beta cells of the islets that secrete insulin in response to increasing blood glucose concentrations. Ideally, transplantation of such cells (allografts or xenografts) could restore normoglycemia. However, as with most tissue or cellular transplants, the cellular grafts, particularly xenografts, are subjected to immunorejection in the absence of chronic immunosuppression. Thus, it is of great interest to develop new technologies that may be used for islet cell replacement. This research proposal describes a new approach to cellular delivery based on micro- and nanotechnology. Utilizing this approach, nanoporous biocapsules are bulk and surface micromachined to present uniform and well-controlled pore sizes as small as 7 nm, tailored surface chemistries, and precise microarchitectures, in order to provide immunoisolating microenvironments for cells. Such a design may overcome some of the limitations associated with conventional encapsulation and delivery technologies, including chemical instabilities, material degradation or fracture, and broad membrane pore sizes.


Assuntos
Transplante das Ilhotas Pancreáticas/métodos , Nanotecnologia/métodos , Animais , Cápsulas , Humanos , Porosidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...