Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Phys Chem B ; 110(21): 10411-20, 2006 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-16722747

RESUMO

The enantioselective surface chemistry of chiral R-2-bromobutane was studied on the naturally chiral Cu(643)R&S and Cu(531)R&S surfaces by comparing relative product yields during temperature-programmed reaction spectroscopy. Molecularly adsorbed R-2-bromobutane can desorb molecularly or debrominate to form R-2-butyl groups on the surfaces. The R-2-butyl groups react further by beta-hydride elimination to form 1- or 2-butene or by hydrogenation to form butane. Temperature-programmed reaction spectroscopy was used to quantify the relative yields of the various reaction products. At low coverages of R-2-bromobutane on Cu(643)R&S and Cu(531)R&S, the surface chemistry is not enantioselective. At monolayer coverage, however, the product yields indicate that the R-2-bromobutane decomposition reaction rates are sensitive to the handedness of the two chiral surfaces. The impact of surface structure on enantioselectivity was examined by studying the chemistry of R-2-bromobutane on both Cu(643)R&S and Cu(531)R&S. The selectivity of R-2-bromobutane desorption versus debromination is enantiospecific and differs significantly from Cu(643) to Cu(531). The selectivity of the R-2-butyl reaction by beta-hydride elimination versus hydrogenation is only weakly enantiospecific and is similar on both the Cu(643) and Cu(531) surfaces. These results represent the first quantitative observations of enantioselectivity in reactions with well-known mechanisms probed using a simple adsorbate on naturally chiral metal surfaces.


Assuntos
Cobre/química , Hidrocarbonetos Bromados/química , Estereoisomerismo , Propriedades de Superfície
2.
Langmuir ; 21(10): 4547-53, 2005 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-16032871

RESUMO

The origins of the tribological properties and corrosion resistance of amorphous and quasicrystalline approximant alloys have been studied by comparing their properties in thin Al-Cu-Fe alloy films with compositions lying near the quasicrystalline region of the ternary compositional phase diagram. Six sputtered thin films of an Al-Cu-Fe alloy were studied using X-ray diffraction, X-ray photoemission spectroscopy (XPS), and an in situ ultrahigh vacuum (UHV) tribometer. The films were annealed in UHV to induce the formation of orthorhombic, rhombohedral, and amorphous bulk structures. The properties of these thin films were then determined in the same UHV apparatus without exposing the films to air. The rates of surface oxidation by H2O and O2 were measured using XPS. Although the oxidation rates and oxide thicknesses were dependent on the oxidant, they were not sensitive to the structures of the films. Friction was measured between identical samples in sliding contact. The friction coefficients (micros = 0.36 +/- 0.11 to 0.56 +/- 0.08) were comparable to those observed in other experiments using quasicrystals and approximants in UHV; however, there was no strong correlation between the friction coefficients and either the film structure or the degree of surface oxidation. These results suggest that the tribological and corrosion resistance properties of these quasicrystalline approximant alloys are not directly connected to crystalline structure.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA