Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Brain Res ; 1732: 146694, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-32017899

RESUMO

The primary somatosensory cortex (SI) receives input from the contralateral forelimb and projects to homotopic sites in the opposite SI. Since homotopic sites in SI are linked by a callosal pathway, we proposed that repetitive intracortical microstimulation (ICMSr) of neurons in layer V of SI forelimb cortex would increase spike firing in the opposite SI cortex thereby strengthening the callosal pathway sufficiently to allow normally ineffective stimuli from the ipsilateral forelimb to excite cells in the ipsilateral SI. The forelimb representation in SI in one hemisphere was mapped using mechanical and electrical stimulation of the contralateral forelimb, a homotopic site was similarly identified in the opposite SI, the presence of ipsilateral peripheral input was tested in both homotopic sites, and ICMS was used to establish an interhemispheric connection between the two homotopic recording sites. The major findings are: (1) each homotopic forelimb site in SI initially received short latency input only from the contralateral forelimb; (2) homotopic sites in layer V in each SI were interconnected by a callosal pathway; (3) ICMSr delivered to layer V of the homotopic SI in one hemisphere generally increased evoked response spike firing in layer V in the opposite homotopic site; (4) increased spike firing was often followed by the expression of a longer latency normally ineffective input from the ipsilateral forelimb; (5) these longer latency ipsilateral responses are consistent with a delay time sufficient to account for travel across the callosal pathway; (6) increased spike firing and the resulting ipsilateral peripheral input were also corroborated using in-vivo intracellular recording; and (7) inactivation of the stimulating site in SI by lidocaine injection or local surface cooling abolished the ipsilateral response, suggesting that the ipsilateral response was very likely relayed across the callosal pathway. These results suggest that repetitive microstimulation can do more than expand receptive fields in the territory adjacent to the stimulating electrode but in addition can also alter receptive fields in homotopic sites in the opposite SI to bring about the expression of previously ineffective input from the ipsilateral forelimb.


Assuntos
Potenciais de Ação/fisiologia , Membro Anterior/fisiologia , Lateralidade Funcional/fisiologia , Neurônios/fisiologia , Córtex Somatossensorial/fisiologia , Vias Aferentes/fisiologia , Animais , Estimulação Elétrica , Feminino , Masculino , Plasticidade Neuronal/fisiologia , Ratos , Ratos Sprague-Dawley
2.
Brain Res ; 1717: 228-234, 2019 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-31028729

RESUMO

The primary somatosensory cortex (S1) comprises a number of functionally distinct regions, reflecting the diversity of somatosensory receptor submodalities innervating the body. In particular, two spatially and functionally distinct nociceptive regions have been described in primate S1 (Vierck et al., 2013; Whitsel et al., 2019). One region is located mostly in Brodmann cytoarchitectonic area 1, where a subset of neurons exhibit functional characteristics associated with myelinated Aδ nociceptors and perception of 1st/sharp, discriminative pain. The second region is located at the transition between S1 and primary motor cortex (M1) in area 3a, where neurons exhibit functional characteristics associated with unmyelinated C nociceptors and perception of 2nd/slow, burning pain. To test the hypothesis that in rats the transitional zone (TZ) - which is a dysgranular region at the transition between M1 and S1 - is the functional equivalent of the nociresponsive region of area 3a in primates, extracellular spike discharge activity was recorded from TZ neurons in rats under general isoflurane anesthesia. Thermonoxious stimuli were applied by lowering the contralateral forepaw or hindpaw into a 48-51 °C heated water bath for 5-10 s. Neurons in TZ were found to be minimally affected by non-noxious somatosensory stimuli, but highly responsive to thermonoxious skin stimuli in a slow temporal summation manner closely resembling that of nociresponsive neurons in primate area 3a. Selective inactivation of TZ by topical lidocaine application suppressed or delayed the nociceptive withdrawal reflex, suggesting that TZ exerts a tonic facilitatory influence over spinal cord neurons producing this reflex. In conclusion, TZ appears to be a rat homolog of the nociresponsive part of monkey area 3a. A possibility is considered that this region might be primarily engaged in autonomic aspects of nociception.


Assuntos
Nociceptores/fisiologia , Córtex Sensório-Motor/metabolismo , Córtex Sensório-Motor/fisiologia , Animais , Mapeamento Encefálico/métodos , Feminino , Membro Anterior/fisiologia , Masculino , Córtex Motor/fisiologia , Nociceptividade/fisiologia , Nociceptores/metabolismo , Dor/fisiopatologia , Ratos , Ratos Sprague-Dawley , Reflexo/fisiologia , Células Receptoras Sensoriais/metabolismo , Córtex Somatossensorial/fisiologia , Medula Espinal/fisiologia
3.
BMC Biomed Eng ; 1: 19, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-32903340

RESUMO

BACKGROUND: A growing need exists for neuroscience platforms that can perform simultaneous chronic recording and stimulation of neural tissue in animal models in a telemetry-controlled fashion with signal processing for analysis of the chronic recording data and external triggering capability. We describe the system design, testing, evaluation, and implementation of a wireless simultaneous stimulation-and-recording device (SRD) for modulating cortical circuits in physiologically identified sites in primary somatosensory (SI) cortex in awake-behaving and freely-moving rats. The SRD was developed using low-cost electronic components and open-source software. The function of the SRD was assessed by bench and in-vivo testing. RESULTS: The SRD recorded spontaneous spiking and bursting neuronal activity, evoked responses to programmed intracortical microstimulation (ICMS) delivered internally by the SRD, and evoked responses to external peripheral forelimb stimulation. CONCLUSIONS: The SRD is capable of wireless stimulation and recording on a predetermined schedule or can be wirelessly synchronized with external input as would be required in behavioral testing prior to, during, and following ICMS.

4.
Brain Res ; 1583: 89-108, 2014 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-25058605

RESUMO

In this study, we examined the role of the ventral posterior lateral nucleus (VPL) as a possible substrate for large-scale cortical reorganization in the forepaw barrel subfield (FBS) of primary somatosensory cortex (SI) that follows forelimb amputation. Previously, we reported that, 6 weeks after forelimb amputation in young adult rats, new input from the shoulder becomes expressed throughout the FBS that quite likely has a subcortical origin. Subsequent examination of the cuneate nucleus (CN) 1 to 30 weeks following forelimb amputation showed that CN played an insignificant role in cortical reorganization and led to the present investigation of VPL. As a first step, we used electrophysiological recordings in forelimb intact adult rats (n=8) to map the body representation in VPL with particular emphasis on the forepaw and shoulder representations and showed that VPL was somatotopically organized. We next used stimulation and recording techniques in forelimb intact rats (n=5) and examined the pattern of projection (a) from the forelimb and shoulder to SI, (b) from the forepaw and shoulder to VPL, and (c) from sites in the forepaw and shoulder representation in VPL to forelimb and shoulder sites in SI. The results showed that the projections were narrowly focused and homotopic. Electrophysiological recordings were then used to map the former forepaw representation in forelimb amputated young adult rats (n=5) at 7 to 24 weeks after amputation. At each time period, new input from the shoulder was observed in the deafferented forepaw region in VPL. To determine whether the new shoulder input in the deafferented forepaw VPL projected to a new shoulder site in the deafferented FBS, we examined the thalamocortical pathway in 2 forelimb-amputated rats. Stimulation of a new shoulder site in deafferented FBS antidromically-activated a cell in the former forepaw territory in VPL; however, similar stimulation from a site in the original shoulder representation, outside the deafferented region, in SI did not activate cells in the former forepaw VPL. These results suggest that the new shoulder input in deafferented FBS is relayed from cells in the former forepaw region in VPL. In the last step, we used anatomical tracing and stimulation and recording techniques in forelimb intact rats (n=9) to examine the cuneothalamic pathway from shoulder and forepaw receptive field zones in CN to determine whether projections from the shoulder zone might provide a possible source of shoulder input to forepaw VPL. Injection of biotinylated dextran amine (BDA) into physiologically identified shoulder responsive sites in CN densely labeled axon terminals in the shoulder representation in VPL, but also gave off small collateral branches into forepaw VPL. In addition, microstimulation delivered to forepaw VPL antidromically-activated cells in shoulder receptive field sites in CN. These results suggest that forepaw VPL also receives input from shoulder receptive sites in CN that are latent or subthreshold in forelimb intact rats. However, we speculate that following amputation these latent shoulder inputs become expressed, possibly as a down-regulation of GABA inhibition from the reticular nucleus (RTN). These results, taken together, suggest that VPL provides a substrate for large-scale cortical reorganization that follows forelimb amputation.


Assuntos
Amputação Cirúrgica , Membro Anterior/fisiopatologia , Plasticidade Neuronal/fisiologia , Córtex Somatossensorial/fisiopatologia , Núcleos Ventrais do Tálamo/fisiopatologia , Animais , Biotina/análogos & derivados , Núcleo Caudado/patologia , Núcleo Caudado/fisiopatologia , Dextranos , Estimulação Elétrica , Microeletrodos , Vias Neurais/patologia , Vias Neurais/fisiopatologia , Técnicas de Rastreamento Neuroanatômico , Neurônios/patologia , Neurônios/fisiologia , Fotomicrografia , Ratos Sprague-Dawley , Ombro/fisiopatologia , Córtex Somatossensorial/patologia , Núcleos Ventrais do Tálamo/patologia
5.
Artigo em Inglês | MEDLINE | ID: mdl-25569987

RESUMO

We describe for the first time the design, implementation, and testing of a telemetry controlled simultaneous stimulation and recording device (SRD) to deliver chronic intercortical microstimulation (ICMS) to physiologically identified sites in rat somatosensory cortex (SI) and test hypotheses that chronic ICMS strengthens interhemispheric pathways and leads to functional reorganization in the enhanced cortex. The SRD is a custom embedded device that uses the Cypress Semiconductor's programmable system on a chip (PSoC) that is remotely controlled via Bluetooth. The SRC can record single or multiunit responses from any two of 12 available inputs at 1-15 ksps per channel and simultaneously deliver stimulus pulses (0-255 µA; 10 V compliance) to two user selectable electrodes using monophasic, biphasic, or pseudophasic stimulation waveforms (duration: 0-5 ms, inter-phase interval: 0-5 ms, frequency: 0.1-5 s, delay: 0-10 ms). The SRD was bench tested and validated in vivo in a rat animal model.


Assuntos
Estimulação Elétrica/instrumentação , Rede Nervosa/fisiologia , Córtex Somatossensorial/fisiologia , Tecnologia sem Fio , Animais , Eletrodos , Potenciais Evocados , Ratos , Interface Usuário-Computador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...